Formation and circulation of dense water from a two-year moored record in the northwestern Iceland Sea

Stefanie Semper
Kjetil Våge
Ilker Fer
Silje Skjelsvik
Linda Latuta
Robert Pickart
Water mass transformation in the Nordic Seas is crucial for the climate
Two main formation mechanisms of overflow water

rim current system:
→ East Greenland Current
Two main formation mechanisms of overflow water

rim current system:
→ East Greenland Current

interior basins:
→ North Icelandic Jet
→ Iceland–Faroe Slope Jet
High heat loss near the sea-ice edge facilitates open-ocean convection
Sea-ice retreat opens up new areas for dense-water formation
A mooring in the now ice-free northwestern Iceland Sea
Eggvin Offset – a gap in the mid-Atlantic ridge
Outline

- How dense overflow water is formed in Eggvin Offset?
Outline

• How dense overflow water is formed in Eggvin Offset?

• What are the processes affecting the mixed-layer evolution?
Outline

- How dense overflow water is formed in Eggvin Offset?
- What are the processes affecting the mixed-layer evolution?
- Is Eggvin Offset a major passage for dense-water exchange between the Greenland and Iceland Seas?
A unique data set from a sparsely sampled region

- two-year long record: August 2016 – June 2018
- 25 instruments: 21 x temperature, 4 x salinity, 6 x pressure, 4 x velocity
- 15 min temporal resolution (5 x temperature loggers: 30 s)
- uppermost instrument at 8 m depth
Temperature evolution reveals two different winters
Temperature evolution reveals two different winters
Two stages of mixed-layer evolution: I) cooling, II) deepening
Two stages of mixed-layer evolution: I) cooling, II) deepening
Formation of denser water during winter 2016/2017

- Maximum densities:
 - $\sigma = 28.03 \text{ kg m}^{-3}$ (winter 2016/17)
 - $\sigma = 27.97 \text{ kg m}^{-3}$ (winter 2017/18)
- Similar mixed-layer densities as in the central Iceland Sea several decades ago → shifting locus of dense-water formation
Formation of denser water during winter 2016/2017

- Maximum densities: $\sigma_\theta = 28.03 \text{ kg m}^{-3}$ (winter 2016/17)
 $\sigma_\theta = 27.97 \text{ kg m}^{-3}$ (winter 2017/18)

- Similar mixed-layer densities as in the central Iceland Sea several decades ago → shifting locus of dense-water formation
Formation of denser water during winter 2016/2017

- maximum densities:
 \[\sigma_\theta = 28.03 \text{ kg m}^{-3} \text{ (winter 2016/17)} \]
 \[\sigma_\theta = 27.97 \text{ kg m}^{-3} \text{ (winter 2017/18)} \]
Formation of denser water during winter 2016/2017

- maximum densities:
 \(\sigma_\theta = 28.03 \text{ kg m}^{-3} \) (winter 2016/17)
 \(\sigma_\theta = 27.97 \text{ kg m}^{-3} \) (winter 2017/18)

- similar mixed-layer densities as in the central Iceland Sea several decades ago

→ shifting locus of dense-water formation
Closer sea-ice edge in winter 2016/2017

- mean distance ice edge–mooring: 99 km (winter 2016/17); 126 km (winter 2017/18)
Higher turbulent heat fluxes in winter 2016/2017

- mean turbulent heat flux: 104 W m^{-2} (winter 2016/17); 88 W m^{-2} (winter 2017/18)
Varying distribution of cold-air outbreak (CAO) forcing

CAO contribution to wintertime heat loss:

54%
Varying distribution of cold-air outbreak (CAO) forcing

CAO contribution to wintertime heat loss:

- 2016/2017: 54%
- 2017/2018: 38%

L. Latuta
Two stages of mixed-layer evolution: I) cooling, II) deepening
Expected geostrophic flow through Eggvin Offset

S. Skjelsvik
Expected geostrophic flow through Eggvin Offset
Little transport into the Iceland Sea through Eggvin Offset
Little transport into the Iceland Sea through Eggvin Offset
Argo demonstrates a connection to the north Iceland slope
Argo demonstrates a connection to the north Iceland slope
Summary

- **Dense-water formation transitions** from the central to the western Iceland Sea due to retreating sea ice.
Summary

- **Dense-water formation transitions** from the central to the western Iceland Sea due to retreating sea ice.

- **Deeper and denser mixed layers** were attained in winter 2016/2017 due to a smaller distance to the ice edge and higher mean heat fluxes (→ importance of **cold-air outbreaks**).
Summary

- **Dense-water formation transitions** from the central to the western Iceland Sea due to retreating sea ice.
- **Deeper and denser mixed layers** were attained in winter 2016/2017 due to a smaller distance to the ice edge and higher mean heat fluxes (→ importance of **cold-air outbreaks**).
- The **distribution of CAOs** over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of **ocean advection**).
Summary

- **Dense-water formation transitions** from the central to the western Iceland Sea due to retreating sea ice.

- **Deeper and denser mixed layers** were attained in winter 2016/2017 due to a smaller distance to the ice edge and higher mean heat fluxes (→ importance of **cold-air outbreaks**).

- The **distribution of CAOs** over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of **ocean advection**).

- Eggvin Offset has a **connection** to the north Iceland slope, but is **no major pathway** for dense water.
Summary

- **Dense-water formation transitions** from the central to the western Iceland Sea due to retreating sea ice.

- **Deeper and denser mixed layers** were attained in winter 2016/2017 due to a smaller distance to the ice edge and higher mean heat fluxes (→ importance of **cold-air outbreaks**).

- The **distribution of CAOs** over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of **ocean advection**).

- Eggvin Offset has a **connection** to the north Iceland slope, but is **no major pathway** for dense water.

Contact: stefanie.semper@uib.no
Climatology of turbulent heat fluxes and sea-ice concentration
Seasonality of turbulent heat fluxes (winter 2002/03 – winter 2020/21)
Bathymetry of the southern slope of Eggvin Offset

S. Skjelsvik
Closer sea-ice edge in winter 2016/2017

- mean distance ice edge–mooring: 99 km (winter 2016/17); 126 km (winter 2017/18)
Northerly winds associated with high heat fluxes
Looking beyond the mean

winter 2016/17 stage I

winter 2017/18 stage I

winter 2016/17 stage II

winter 2017/18 stage II