Formation and circulation of dense water from a two-year moored record in the northwestern Iceland Sea

Stefanie Semper Kjetil Våge Ilker Fer Silje Skjelsvik Linda Latuta Robert Pickart

Water mass transformation in the Nordic Seas is crucial for the climate

Two main formation mechanisms of overflow water

Two main formation mechanisms of overflow water

High heat loss near the sea-ice edge facilitates open-ocean convection

Sea-ice retreat opens up new areas for dense-water formation

A mooring in the now ice-free northwestern Iceland Sea

Eggvin Offset – a gap in the mid-Atlantic ridge

Outline

 How dense overflow water is formed in Eggvin Offset?

Outline

- How dense overflow water is formed in Eggvin Offset?
- What are the processes affecting the mixed-layer evolution?

Outline

- How dense overflow water is formed in Eggvin Offset?
- What are the processes affecting the mixed-layer evolution?
- Is Eggvin Offset a major passage for dense-water exchange between the Greenland and Iceland Seas?

A unique data set from a sparsely sampled region

- two-year long record: August 2016 June 2018
- 25 instruments: 21 x temperature, 4 x salinity, 6 x pressure, 4 x velocity
- 15 min temporal resolution (5 x temperature loggers: 30 s)
- uppermost instrument at 8 m depth

Temperature evolution reveals two different winters

Temperature evolution reveals two different winters

Two stages of mixed-layer evolution: I) cooling, II) deepening

Two stages of mixed-layer evolution: I) cooling, II) deepening

Formation of denser water during winter 2016/2017

Formation of denser water during winter 2016/2017

• maximum densities: $\sigma_{\theta} = 28.03 \, \mathrm{kg \, m^{-3}} \; (\mathrm{winter} \; 2016/17) \\ \sigma_{\theta} = 27.97 \, \mathrm{kg \, m^{-3}} \; (\mathrm{winter} \; 2017/18)$

Formation of denser water during winter 2016/2017

- maximum densities: $\sigma_{\theta} = 28.03 \, \mathrm{kg \, m^{-3}}$ (winter 2016/17) $\sigma_{\theta} = 27.97 \, \mathrm{kg \, m^{-3}}$ (winter 2017/18)
- similar mixed-layer densities as in the central Iceland Sea several decades ago
 - \rightarrow shifting locus of dense-water formation

Closer sea-ice edge in winter 2016/2017

ullet mean distance ice edge-mooring: 99 km (winter 2016/17); 126 km (winter 2017/18)

Higher turbulent heat fluxes in winter 2016/2017

ullet mean turbulent heat flux: $104\,\mathrm{W\,m^{-2}}$ (winter 2016/17); $88\,\mathrm{W\,m^{-2}}$ (winter 2017/18)

Varying distribution of cold-air outbreak (CAO) forcing

CAO contribution to wintertime heat loss:

54 %

Varying distribution of cold-air outbreak (CAO) forcing

CAO contribution to wintertime heat loss:

54 %

38 %

Two stages of mixed-layer evolution: I) cooling, II) deepening

Expected geostrophic flow through Eggvin Offset

Expected geostrophic flow through Eggvin Offset

Little transport into the Iceland Sea through Eggvin Offset

Little transport into the Iceland Sea through Eggvin Offset

Argo demonstrates a connection to the north Iceland slope

Argo demonstrates a connection to the north Iceland slope

Summary

Dense-water formation transitions
from the central to the western Iceland Sea
due to retreating sea ice.

Summary

- Dense-water formation transitions from the central to the western Iceland Sea due to retreating sea ice.
- Deeper and denser mixed layers
 were attained in winter 2016/2017
 due to a smaller distance to the ice edge
 and higher mean heat fluxes
 (→ importance of cold-air outbreaks).

Summary

- Dense-water formation transitions from the central to the western Iceland Sea due to retreating sea ice.
- Deeper and denser mixed layers
 were attained in winter 2016/2017
 due to a smaller distance to the ice edge
 and higher mean heat fluxes
 (→ importance of cold-air outbreaks).
- The distribution of CAOs over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of ocean advection).

Summary

- Dense-water formation transitions from the central to the western Iceland Sea due to retreating sea ice.
- Deeper and denser mixed layers
 were attained in winter 2016/2017
 due to a smaller distance to the ice edge
 and higher mean heat fluxes
 (→ importance of cold-air outbreaks).
- The distribution of CAOs over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of ocean advection).
- Eggvin Offset has a connection to the north Iceland slope, but is no major pathway for dense water.

Summary

- Dense-water formation transitions from the central to the western Iceland Sea due to retreating sea ice.
- Deeper and denser mixed layers
 were attained in winter 2016/2017
 due to a smaller distance to the ice edge
 and higher mean heat fluxes
 (→ importance of cold-air outbreaks).
- The distribution of CAOs over the winter affects the final mixed-layer properties (→ cooling and deepening stages; importance of ocean advection).
- Eggvin Offset has a connection to the north Iceland slope, but is no major pathway for dense water.

Thank you!

Contact: stefanie.semper@uib.no

Climatology of turbulent heat fluxes and sea-ice concentration

Seasonality of turbulent heat fluxes (winter 2002/03 – winter 2020/21)

Bathymetry of the southern slope of Eggvin Offset

Closer sea-ice edge in winter 2016/2017

mean distance ice edge-mooring: 99 km (winter 2016/17); 126 km (winter 2017/18)

Northerly winds associated with high heat fluxes

Looking beyond the mean

