Interbasin redistribution of heat and nutrients due to AMOC changes

Shantong Sun and Andrew F. Thompson California Institute of Technology

Email: shantong@caltech.edu

Website: stsun.github.io

Interbasin heat redistribution following a weakening of AMOC

Anti-phasing temperature between hemispheres and bi-polar seesaw

Anti-phasing temperature changes between Greenland and Antarctica

Stocker and Johnson (2003)

Compensating heat transport responses between the Atlantic and Indo-Pacific at southern boundary following a collapsed AMOC.

Compensating heat transport due to transient inter-basin overturning compensation

Transient inter-basin overturning compensation between Atlantic and Indo-Pacific

Different from the steady state balance, the Indo-Pacific develops an overturning circulation anomaly that opposes the Atlantic changes, balanced by an **adiabatic** deepening of isopycnals (not PMOC or interbasin overturning seesaw as discussed in Saenko et al., 2004).

Reduced gravity model (Lat x Lon x 1.5)

Latitude

$$T_{
m SO} = egin{pmatrix} au & {
m Eddy} \ - au_{
m P} + K_{
m GM} s \ - au_{
m CM} t \ - au_{
m V} \ {
m Wind} \ \end{array}$$

Control: NADW formation balanced by Southern Ocean overturning

$$T_{
m NADW} \approx T_{
m SO}$$

Perturbation: reduced NADW formation leads to a deepening of the interface

Reduced gravity model (Lat x Lon x 1.5)

Latitude

$$T_{
m SO} = egin{pmatrix} au & {
m Eddy} \ - au & {
m F} \
ho f_s \
h$$

Control: NADW formation balanced by Southern Ocean overturning

$$T_{
m NADW} \approx T_{
m SO}$$

Perturbation: reduced NADW formation leads to a deepening of the interface

Overturning responses to reduced NADW formation

Compensating overturning responses between Atlantic and Indo-Pacific

Compensating heat transport responses between Atlantic and Indo-Pacific

Indo-Pacific subsurface warming due to inter-basin heat exchanges

- Centennial subsurface warming due to inter-basin overturning (compare with vertical diffusion)
- This is an important heat source for future Indo-Pacific warming on centennial timescales

An update to bi-polar seesaw: a thermal inter-basin seesaw

12/14

Nutrient redistribution by the inter-basin overturning responses following AMOC weakening

Nitrate distribution from GLODAPv2

Following a weakened AMOC,

Atlantic: decrease in nutrients supply by the Indo-Pa

Indo-Pacific: Isopycnal deepening decreases upper ocean nutrient concentration

• Due to different vertical nutrients gradient between Atlantic and Indo-Pacific, this inter-basin overturning response could also drive a net nutrient transport into the **Southern Ocean**.

northward AAIW transport

Summary

The transient inter-basin overturning responses to AMOC changes plays a key role in redistributing

heat and nutrients.

Email: shantong@caltech.edu

Website: stsun.github.io