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Clouds and low clouds especially have been the primary 
source of uncertainty in climate predictions for decades

Stratocumulus: colder Cumulus: warmer
h"p://eoimages.gsfc.nasa.gov	

They will remain globally unresolvable for decades to come



Yet we have detailed data about clouds and other 
small-scale features, albeit with low temporal resolution

NASA/Goddard Space Flight Center Scientific Visualization Studio

CloudSat, CALIPSO, and MODIS



And we can generate data computationally in 
limited-area high-resolution simulations

Simulation with PyCLES (Kyle Pressel et al. 2015)

Simulation of tropical cumulus with O(10 m) resolution (blue: rain) 



Exploiting both observational and 
computationally generated data with AI 

tools is the solution to the 
parameterization problem. 

But climate prediction comes with special 
challenges



Data-informed Earth system models must meet 
three critical requirements

1. Generalizability out of sample: To predict a climate 
without an observed analogue 

2. Interpretability: To trust models that cannot 
immediately be verified with climate-change data 

3. Uncertainty quantification (UQ): To estimate risks for 
climate change adaptation

Schneider, Jeevanjee, Socolow, Accelerating Progress in Climate Science, Physics Today 6/2021



The requirements can be met by combining the best 
of reductionist science with data science approaches

• Deep learning’s success rests on overparameterization:  
• Leads to expressive models and data-hungry methods 

• Makes generalizability, interpretability, and UQ challenging 

• Reductionist science’s success rests on parametric sparsity: 
• Generalizable and interpretable (e.g., Newton’s Law of Universal Gravitation) 

• Reaches limits in complex systems such as the Earth system 

Combine both, traditional reductionist science with AI where 
reductionism reaches its limits



We are exploiting a three-pronged hybrid approach

• Advance Theory: Use known equations as far as 
possible, with systematic coarse-graining approaches, to 
promote parametric sparsity. 

• Harness Data: Exploit detailed Earth observations now 
available, together with data generated computationally. 

• Leverage Computing Power: Transition to hardware 
with accelerators (GPUs, TPUs, …) is an opportunity, 
e.g., in enabling distributed local simulations of small-
scale processes 

(Schneider, Jeevanjee, Socolow, Physics Today 06/2021)



Advance theory: We use a unified, physics-based model, 
derived by conditional averaging of equations of motion

Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020

For example, to model clouds, we coarse-grain fluids equations  by 
conditionally averaging over coherent plumes (i=1, …, N) and isotropic 
environment (I=0), leading to exact conservation laws: 

• Continuity: 

• Scalar mean: 

subdomains (second term). From the large-scale model perspective, h/i represents the resolved GS mean,
and h/!w!i represents the SGS fluxes and (co-)variances of scalars that need to be parameterized.

2.2. Dynamic Equations for Subdomains
In deriving dynamic equations for mean fields and covariances in the subdomains, we make the following
simplifying assumptions:

1. Horizontal variations of density q are neglected, except in the calculation of vertical accelerations. This
makes the EDMF scheme similar to a subdomain-averaged anelastic system, and area-weighted averages
over subdomains as in equations (2) and (3) are equivalent to mass-weighted averages.

2. Horizontal variations of SGS statistics (mean fields and covariances) are neglected, so that only deriva-
tives with respect to time t and height z appear (boundary-layer approximation).

3. Mean horizontal velocities uh5ðu; vÞ in any subdomain are taken to be equal to the domain-mean values
huhi, so that only advection by domain-mean horizontal velocities contributes to SGS horizontal fluxes.

4. Fluid masses exchanged between any two subdomains by entrainment or detrainment carry with
them the mean properties of the subdomains (mean-field approximation). This also applies to
exchange of covariances among subdomains: they are entrained or detrained like other fluid
properties.

With these assumptions, the continuity equation for the area fraction ai becomes
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Here, rh5ð@=@x; @=@yÞ is the del operator in the horizontal plane. The rh-terms are included to allow for
the horizontal advection of SGS properties across grid cells. The fractional entrainment rate !ij gives the rate
of entrainment into subdomain i from subdomain j, defined so that !ij5ðqaiw iÞ21Eij , where Eij is the mass
entrained per unit time into subdomain i from j (normalized by the area of the entire domain). The fractional
detrainment rate di gives the rate of detrainment from subdomain i into all other subdomains, defined so
that di5ðqaiw iÞ21Di , where Di is the mass detrained from subdomain i. (Into which subdomain the mass is
detrained does not matter for the subdomain i from which it is detrained. Hence, the subscript j only
appears in the entrainment rate for subdomain i, because the properties of the air entrained from subdo-
main j matter for i.) By mass conservation, any mass detrained from subdomain j must be entrained by other
subdomains (or re-entrained by j), so that Dj5

P
i Eij , and thus

qajw jdj5
X

i
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Exact definitions of entrainment and detrainment rates have been given, e.g., by de Rooy et al. (2013) and
Yano (2014a). They are reproduced with slight modifications in Appendix A for reference. A detailed deriva-
tion of the covariance equation (6) is given in Appendix B.
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Closure functions

Closure functions are excellent targets for ML approaches; they can be 
stochastic and should include structural error models
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Figure 1. Profiles of (a) potential temperature and (b) horizontal velocity averaged over the

ninth hour of the GABLS simulation. Results are shown for LES and for the EDMF-based SCM

with �z = 3.125 m, �z = 12.5 m, and �z = 50 m. The shaded region represents the spread of

LES results with �z=3.125 m reported in Beare et al. (2006).

ing the same resolution, is also included for reference. The SCM simulations are performed306

at vertical resolutions of �z = 3.125 m, 12.5 m, and 50 m (128, 32, and 8 degrees of307

freedom, respectively). This range characterizes the performance of the EDMF scheme308

both at high resolution and for coarser resolutions typical of regional and global climate309

models in the lower troposphere.310

4.1.2 Results311

Figure 1 shows vertical profiles of h✓i, hui and hvi time-averaged over the ninth hour312

of simulation. The EDMF scheme captures well the boundary layer height and the in-313

tensity of the low-level jet, with little resolution dependence of the mean profiles up to314

�z = 12.5 m. At 50 m resolution, the SCM predicts a slightly deeper boundary layer.315

The EDMF-simulated TKE follows closely the LES data, as shown in Figure 2. The time-316

series show periods of TKE growth due to the subgrid momentum flux from the surface317

layer, and periods of decay due to the increasing stratification. These changes in verti-318

cally integrated TKE are much smaller than the integrated TKE production and dissi-319

pation terms, as shown in Figure 3. The domain-mean TKE budget, which coincides with320

the environmental budget for stable conditions, is shown in Figure 3.321

The two main causes of grid-sensitivity at 50 m resolution are the inability to cap-322

ture the region of maximum shear production close to the surface, and the deterioration323

of the friction velocity diagnosis. The e↵ect of the former can be observed in Figure 3.324

Even if the budget is correctly captured above 50 m, the absence of grid-cells at the lower325

levels results in a significant reduction of the vertically integrated production and dis-326

sipation. In addition, the diagnosis of u⇤ based on Byun (1990) overestimates the fric-327

tion velocity at coarser resolutions. This can be observed by comparing the normalized328

TKE profile to the vertically integrated timeseries in Figure 2.329

The dominant mixing length throughout the simulation is shown in Figure 2 for330

all heights. Initially, the wall-limited mixing length lw is dominant below the inversion,331

due to the absence of mean shear and stratification. As the shear and stratification de-332

velop, the dominant mixing length profile attains a three-layered structure. Closest to333

–14–
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Figure 2. (a) Observed GOCCP annual-mean low-cloud fraction (%). (b) Low-cloud bias of the CNRM-CM6-1 AMIP
simulation relative to the GOCCP climatology (%). Data are averaged between 2007 and 2015. Red boxes represent the
three major stratocumulus regions used in the present study and the red dashed line indicates the South-East Atlantic
low-cloud transect used in Figure 3. GOCCP = GCM Oriented CALIPSO Cloud Product; CNRM = Centre National de
Recherches Météorologiques; AMIP =Atmospheric Model Intercomparison Project.

The hindcast period is defined such that the corresponding cloud biases of the reference AMIP simulation are
representative of its climatological biases. Besides, August and September are chosen as cloud biases in the
regions of interest are maximum during this season (see section 4.3). The period also allows to use space-based
active measurements from the Lidar onboard the CALIPSO satellite (section 4.2) and the radiosoundings from
the MAGIC field campaign (Lewis et al., 2012, see also Appendix A).

3. Reference Data Sets

ERA-Interim is used to characterize atmospheric conditions such as temperature and humidity (Dee et al.,
2011). As a reference for clouds, we use the GCM Oriented CALIPSO Cloud Product (GOCCP) data set (Chepfer
et al., 2010) based on measurements from the active sensor onboard the CALIPSO satellite (Winker et al., 2010).
Vertical profiles of clouds are provided along its track, twice a day at a given location. The GOCCP product
adjusts the raw data to allow direct comparison with climate models. Monthly and daily vertical profiles of
cloud cover and horizontal distributions of low clouds (cloud-top pressure greater than 680 hPa) from January
2007 to December 2015, on a 2∘ × 2∘ horizontal grid, are used in the following. The use of a simulator would
provide a more consistent comparison between model and observations (Klein & Jakob, 1999). However, on
the one hand, simulators also have large uncertainties, in particular due to high-cloud attenuation and, on
the other hand, given the large model biases, we expect our results to be rather insensitive to the use of a
simulator. ERA-Interim cloud fraction and liquid water content will also be used, keeping in mind that this
remains model variables. Hereafter, the analysis is performed on the CNRM model 1.4∘ × 1.4∘ horizontal grid,

BRIENT ET AL. 132

Polar boundary layer

Parameterization with empirical closure functions and 9 hand-tuned 
parameters captures polar and subtropical boundary layer and clouds

LES
Parameterization

Observations

Stratocumulus-topped BL
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ninth hour of the GABLS simulation. Results are shown for LES and for the EDMF-based SCM
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Lopez-Gomez et al. (JAMES 2020)
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Figure 2. (a) Observed GOCCP annual-mean low-cloud fraction (%). (b) Low-cloud bias of the CNRM-CM6-1 AMIP
simulation relative to the GOCCP climatology (%). Data are averaged between 2007 and 2015. Red boxes represent the
three major stratocumulus regions used in the present study and the red dashed line indicates the South-East Atlantic
low-cloud transect used in Figure 3. GOCCP = GCM Oriented CALIPSO Cloud Product; CNRM = Centre National de
Recherches Météorologiques; AMIP =Atmospheric Model Intercomparison Project.

The hindcast period is defined such that the corresponding cloud biases of the reference AMIP simulation are
representative of its climatological biases. Besides, August and September are chosen as cloud biases in the
regions of interest are maximum during this season (see section 4.3). The period also allows to use space-based
active measurements from the Lidar onboard the CALIPSO satellite (section 4.2) and the radiosoundings from
the MAGIC field campaign (Lewis et al., 2012, see also Appendix A).

3. Reference Data Sets

ERA-Interim is used to characterize atmospheric conditions such as temperature and humidity (Dee et al.,
2011). As a reference for clouds, we use the GCM Oriented CALIPSO Cloud Product (GOCCP) data set (Chepfer
et al., 2010) based on measurements from the active sensor onboard the CALIPSO satellite (Winker et al., 2010).
Vertical profiles of clouds are provided along its track, twice a day at a given location. The GOCCP product
adjusts the raw data to allow direct comparison with climate models. Monthly and daily vertical profiles of
cloud cover and horizontal distributions of low clouds (cloud-top pressure greater than 680 hPa) from January
2007 to December 2015, on a 2∘ × 2∘ horizontal grid, are used in the following. The use of a simulator would
provide a more consistent comparison between model and observations (Klein & Jakob, 1999). However, on
the one hand, simulators also have large uncertainties, in particular due to high-cloud attenuation and, on
the other hand, given the large model biases, we expect our results to be rather insensitive to the use of a
simulator. ERA-Interim cloud fraction and liquid water content will also be used, keeping in mind that this
remains model variables. Hereafter, the analysis is performed on the CNRM model 1.4∘ × 1.4∘ horizontal grid,
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It also captures shallow and deep cumulus convection, 
within the same physical and parametric framework

Deep convection 
LES updraft velocity [m/s]

SCM updraft velocity [m/s]

Shallow convection 

qt

Low-cloud bias in typical model

(Cohen et al. JAMES 2020)



We can also represent the continuous transition 
from shallow to deep convection in time

(Anna Jaruga, in prep.)



Leverage computing power: We have generated a large (500 
members so far) library of LES to calibrate parameterization

• 5-year averaged monthly mean forcing 
from HadGEM2-A amip experiments


• Prescribed SST, RRTM, one-moment 
microphysics based on Kessler


• Domain size: 6km x 6km x 4km, 
resolution: 75m x 75m x 20m


• Simulation time: 6 days

Shen et al., JAMES 2022



Harness data: Learn from time-averaged climate statistics, which 
are what’s relevant for climate prediction and are observationally available

• Spatial smoothness of statistics overcomes 
observation/simulation resolution mismatch 

• Climate-relevant statistics can include, e.g., emergent 
constraints and precipitation extremes 

• Treats learning as inverse problem, rather than 
supervised learning; can be solved with ensemble Kalman 
inversion and variants



Replacing empirical entrainment/detrainment rates by shallow NN and 
calibrating with LES library improves parameterization and generalizes well

(Ignacio Lopez Gomez, in prep.)

Training (present climate LES) Validation (warm climate LES)

Training epoch (Kalman iteration with mini-batching)



When training the model only with present-day LES, validation 
tests with global-warming LES (AMIP+4K) performs very well

Same inverse-problem approach to closure functions can be used 
with other ML tools: NN, neural operators, random feature models 

etc.



Conclusions

• To reduce and quantify uncertainties, combine process-informed 
models with data-driven approaches harnessing climate statistics 

• Sparsely parameterized, physics-based subgrid-scale models can 
capture turbulence and cloud regimes that have vexed climate models for 
decades 

• Our subgrid-scale models can learn both from observations (coming 
soon) and from high-resolution simulations 

• We have developed algorithms (calibrate-emulate-sample) for fast 
observation-based calibration of the parameterizations and are in the 
process of integrating them in GCM  

Much interesting work (coarse-graining theory, scaling on HPC 
architectures, optimal targeting of high-res simulations…) remains to be 

done!



The turbulence, convection, and cloud 
parameterization team
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