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Clouds and low clouds especially have been the primary
source of uncertainty in climate predictions for decades

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder Cumulus: warmer

They will remain globally unresolvable for decades to come
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And we can generate data computationally in
imited-area high-resolution simulations

Simulation of tropical cumulus with O(10 m) resolution (blue: rain)
Simulation with PyCLES (Kyle Pressel et al. 2015)




Exploiting both observational and
computationally generated data with Al
tools is the solution to the
parameterization problem.

But climate prediction comes with special
challenges



Data-informed Earth system models must meet
three critical requirements

1. Generalizability out of sample: To predict a climate
without an observed analogue

2. Interpretability: To trust models that cannot
immediately be verified with climate-change data

3. Uncertainty quantification (UQ): To estimate risks for
climate change adaptation

&
\@ Schneider, Jeevanjee, Socolow, Accelerating Progress in Climate Science, Physics Today 6/2021



The requirements can be met by combining the best
of reductionist science with data science approaches

Deep learning’s success rests on overparameterization:

Leads to expressive models and data-hungry methods

Makes generalizability, interpretability, and UQ challenging

Reductionist science’s success rests on parametric sparsity:
Generalizable and interpretable (e.g., Newton’s Law of Universal Gravitation)

Reaches limits in complex systems such as the Earth system

Combine both, traditional reductionist science with Al where
reductionism reaches its limits
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We are exploiting a three-pronged hybrid approach

- Advance Theory: Use known equations as far as

possible, with systematic coarse-graining approaches, to
promote parametric sparsity.

Harness Data: Exploit detailed Earth observations now
available, together with data generated computationally.

Leverage Computing Power: Transition to hardware
with accelerators (GPUs, TPUs, ...) IS an opportunity,
e.g., In enabling distributed local simulations of small-
scale processes

(Schneider, Jeevanjee, Socolow, Physics Today 06/2021)



Advance theory: \We use a unified, physics-based model,
derived by conditional averaging of equations of motion

For example, to model clouds, we coarse-grain f
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Closure functions are excellent targets for ML approaches, they can be
stochastic and should include structural error models
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Parameterization with empirical closure functions and 9 hand-tunead
parameters captures polar and subtropical boundary layer and clouds
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It also captures shallow and deep cumulus convection,
within the same physical and parametric framework
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We can also represent the continuous transition
from shallow to deep convection in time
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Leverage computing power: \We have generated a large (500
members so far) library of LES to calibrate parameterization

5-year averaged monthly mean forcing
from HadGEM2-A amip experiments

Prescribed SST, RRTM, one-moment
microphysics based on Kessler

Domain size: 6km x 6km x 4km,
resolution: 75m X 75m x 20m

Simulation time: 6 days
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Harness data: Learn from time-averaged climate statistics, which
are what'’s relevant for climate prediction and are observationally available

- Spatial smoothness of statistics overcomes

observation/simulation resolution mismatch

-+ Climate-relevant statistics can include, e.g., emergent

constraints and precipitation extremes

- Treats learning as inverse problem, rather than

supervised learning; can be solved with ensemble Kalman
iINnversion and variants



Replacing empirical entrainment/detrainment rates by shallow NN and
calibrating with LES library improves parameterization and generalizes well
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When training the model only with present-day LES, validation
tests with global-warming LES (AMIP+4K) performs very well
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Same inverse-problem approach to closure functions can be used
with other ML tools: NN, neural operators, random feature models
etc.




Conclusions

- To reduce and guantify uncertainties, combine process-informed

models with data-driven approaches harnessing climate statistics

- Sparsely parameterized, physics-based subgrid-scale models can

capture turbulence and cloud regimes that have vexed climate models for
decades

- Our subgrid-scale models can learn both from observations (coming

soon) and from high-resolution simulations

- We have developed algorithms (calibrate-emulate-sample) for fast

observation-based calibration of the parameterizations and are in the
process of integrating them in GCM

Much interesting work (coarse-graining theory, scaling on HPC
architectures, optimal targeting of high-res simulations...) remains to be
done!
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