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Global food insecurity outlook
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Scenario development for early warning

Hazards:

Hazard
monitoring
tools/info:

Intermediate
shocks:

Proximate
cause:

Household
food security
outcomes:
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. Existing seasonal scale to multiyear

forecasts




Extended
outlooks

Up to 24
months

FEWS NET

Operationally available by Dec
2023

Machine
Learning (ML)
based crop yield
forecasting

Upto 6
months

Sub Saharan
Africa

Partially operational for selected
FEWS NET countries, fully
operational by Dec 2023.

NASA
Hydrology
Forecast and

Analysis System
(NHyFAS)

Initially by NASA,
Currently by
FEWS NET

Sub Saharan
Africa + Middle
East

Currently operational and used by
FEWS NET

Water point level
forecasting

2 weeks to 6
months

NASA Water
Resources

Sahel region

Fully operational by 2025

Selected seasonal to multiyear scale forecasting products supporting FEWS NET



Multi-season ahead forecast of global crop yield
outlook

Recent research showing
skill in multi-year-ahead
forecasts of large-scale
climate modes (e.g.,
ENSO).

We utilize the long-lead
ENSO forecasts from
NOAA PSL to provide

long-lead crop yield outlook.

PSL-CIRES model-analog ENSO forecast initialized from JUN 2023
ENSO state based on Nino 3.4 SST Anomaly
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El Nino composites based national scale crop yield anomaly

Synthesis El Nifo Map
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In-season Machine Learning (ML) based
sub-national scale crop yield forecasts
Y
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4 standard EO data set: 33 non-standard EO features:

- Precipitation — CHIRPS (UCSB)  _, - Number of dry days
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- Temperature — NOAA-PSL - Number ‘?f days
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Recent sub-national scale crop yield forecasts

Forecast for Somalia and Kenya Maize crop yield
relative to 10-year (2009-2018) mean observed
yield for selected high yield admin-2 units

Somalia: Below average (<90%)
to average maize crop yield
expected in the high yield
admin-2 units.

Kenya: Above average (>110%)
to average crop yield is expected
in high yield admin-2 units with
some exceptions in Central and
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Somalia-Maize-Gu-GB at 2023.06 Kenya-Maize-Long-GB at 2023.06

Eastern Kenya.




Seasonal scale hydrologic forecasts BAMS

e Seasonal scale hydrologic forecasting system operational The NASA Hydrological Forecast System for
. Food and Water Security Applications
since late 2018.

e Based on NMME climate forecasts and LIS hydrologic

models.
LDT: / \ Available Output:
Soil moisture, ET, streamflow,
(__Model parameters ) | ‘(NOO’)-MP and CLSM) TWS. and siirface Woter storoge

Noah MP CLSM

( Initial conditions for ) ‘
T T e T ‘ -CCSM4 -CCSM4
Meteorological |-
I_ """" 1 forecast options:
I N MM E |
. i NMIME Prec.
| CFSv2
I forecasts , .
e COM2 ) Non-precip.
met. forcing -
( CMC1 ) 3 ( GEOS) Python scripts produce
forecast products for drought
and flood analysis such as:
200 10w 0 10t 206 306 40E S0 60 Percentiles, Anomalies,
LSM Ensemble Suite Standardized anomalies,

Percent Saturation and terciles.

Source: Hazra et
al., 2023 10
FLDAS-Forecasts: https://Idas.gsfc.nasa.gov/fldas/models/forecast




RootZone-SM IC

RootZone-SM Forecast

Seasonal scale hydrologic forecasts (updated monthly)
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Drought prediction to food insecurity outlooks

Monitoring and
forecasts by
Multi-Agency
Science Team

FEWS NET/CHC Regional

Scientists
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STEP 2:

Describe and classify
current food security
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STEPS:

Describe impacts on
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STEP 8:
Identify events that could
change the scenario

N

STEP 3:

Develop key assumptions

STEP 4:
Describe impacts on
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Needs and limitations




Lack of long-lead hydrologic forecast skill

Source: Hazara et al., 2023
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Top row: Correlation of “open-loop” soil moisture (driven with obs. atmospheric forcings) with SMAP
Bottom row: Correlation of soil moisture forecasts (driven with climate forecasts) with SMAP
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Lack of long-lead SWE forecasts

e Countries like Afghanistan
that are amongst the most
food insecure countries
rely heavily on snowmelt
runoff to supported
irrigated agriculture.

e At present, Afghanistan is
facing unprecedented
level of food insecurity
partly due to the three
consecutive droughts.

e lLong-lead SWE forecasts
would certainly be a
valuable tool for
supporting early warning.

Snow Water Equivalent (SWE) Anomaly
March 31, 2021 minus Average (2001-2021)
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Lack of long-lead rainy season onset forecasts

e Inthe regions with
highest food insecurity
risks (e.g. Eastern Africa),
even a 1 dekad delay
makes the drought a
most-likely outcome.

e Long-lead prediction of
rainy season onset can
be beneficial in those
regions.

Source: Shukla et al., 2021 (PlosOne)

Probability distribution of end of season NDVI anomaly
based on the timing of rainy season onset

Acute food
insecurity (AFI)
risk level-5

Standardized NDVI anomaly

- Normal Start
—— >2 dekad delay >-1 dekad early

>1 dekad delay —— >-2 dekad early i



Opportunities




ENSO based hydrologic
predictability

e ENSO is shown to
influence hydrologic
conditions in several
parts of the globe.

Averaged anomalies

e Multiyear ahead ENSO ~ ©Of seasonal

g . precipitation
prediction is now (aand c) and

possible. seasonal streamflow
(b and d) in Africa, in
) ) El Nifio (EN) and La
e Potential exists for ENSO  Niria (LN) phases

based multiyear
streamflow prediction
(similar to crop yield
outlooks).

Source: Lee et al., 2018 (ERL)

e Arid (<1m%/s)

Averaged anomalies (Z

ENSO)

-1.00 -0.80 -0.60 -0.43 -0.20 020 043 060 080 100
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Sources of seasonal scale hydrologic predictability

e The contribution of
initial conditions (ICs)
is generally highest in
Arid and snow
dominated regions.

e At higher lead climate
forecasts (CF) are the
key contributor to the
hydrologic forecasts
skill.

e The relative
contributions of ICs
vs CF vary
seasonally.

Shukla et al., 2013
(HESS)
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Lead in months
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Forecast initalized on: 01 October
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- W e

Median of RMSE ratio for cumulative runoff forecasts,
over the grid cells in different Koppen-Geiger climate

classes in (a) Northern Hemisphere

and Tropics and (b) Southern Hemisphere — excluding
equatorial climate regions that are included in (a).
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Potential contribution of Soil moisture (SM) vs snow
ICs in seasonal scale hydrologic predictability

Assessment of contribution of SM ICs relative to snow ICs in seasonal hydrologic predictability, at lead-1, -3
and-6 months since the forecast initialization on (a) 1 January, (b) 1 April.
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Value of data
assimilation in
improving hydrologic
forecasts

e Getirana etal., 2020 (WRR)
showed that GRACE DA based
improvement in terrestrial
water storage (TWS) can lead
to improvement in streamflow
forecast skill.

e Such experiments need to be
conducted at global scale.

Source: Getirana et al., 2020 (WRR)
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(1) How does each component
of TWS contribute to its
persistence in observations as
compared to modeled TWS?

(2) How do different
components of TWS initial
conditions influence S2S
hydrologic forecasts of
droughts and floods at
different lead-times and
hydroclimate states?

(3) Can “real-time” S2S
hydrologic forecasts skill be
improved by TWS data
assimilation?

Improving a process-based understanding of
how terrestrial water storage can improve S2S
hydrologic forecasts skill in data-sparse regions

NASA remote
sensing datasets

NASA modeling
datasets

NASA modeling
experiments

Improved
understanding of
persistence in TWS
components

Improved
understanding of the
role of TWS in S28
hydrologic forecasts

Potential improvements
in operational $28
hydrologic forecasts
skill

“Path to utility”

NASA's operational hydrologic forecasting

systems (e.g. FLDAS-Forecasts)

Global food and water security early
warning applications (e.g. by FEWS NET)

Acise Foot inaeciaty: Nae Taers Liss,
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Potential for application of hydrologic forecasts for
anticipating crop productlon shocks

Univariate model 5 ENSO (DJF)
e Hydrologic forecasts (such as SM
forecasts) can be used to Sl
anticipate crop production 2 20l
shocks. g
e Shukla et al., 2020 shows that
SM forecaStS generated In early o I.Teb-.RZS.M (mor.nitoringv) | “ Feb-RZSM (Nov 1 foreca.st) |
November Can provide yield . : ?;z’:;‘:;‘::‘ld (mean error = 0.174tha") :—- ?;Zi:;ig';‘;‘lo (mean error = 0.301tha")

forecasts with the similar skill as
in February using DJF ENSO as
a predictor.
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Potential for application of . o
Skill of lead-3 months TWS forecasts initialized on (a)

hydrologic forecasts for Nov 1, and (b) Mar 1, and TWS based LA forecasts
anticipating crop production . Initialized on (c) Nov 1 3@0' _(dg[\’/lfﬂ
shocks s o IR BT R
e Cooketal., 2021, shows FL*Q.,:' ; @ X L :’
promising level of TWS forecasts (a) i 'f — (c) e "{
skill (by FLDAS-Forecasts system) LT )
at lead-3 months. JAN SR P= JAN L B
e The study also shows e [ L1 el
predictability of LAl (indicator of #- [ 2 X Selle B TOTR
vegetation health) using TWS, at - , ‘, © | " 3’
least at 3 months lead-time. S X NG
e Hence long-lead TWS forecasts i e \ Cf
are likely to be helpful for FEWS. ®) | *1 q{ G . «\'}{i
MAY | 27| MAY | .\4}9 v
Source: Cook et al., 2021 (JHM) (o MAR 1) ™= ©  (init MAR 1) LL
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Summary

(1)

(2)
©)

(4)

(5)

Unprecedented level of food insecurity, drought being one of the important
contributors.

Seasonal scale forecasting system currently support food insecurity early warning.

At multiyear scale ENSO forecasts are being used to identify sequential and/or
synchronous agricultural droughts.

Key limitations include (i) lack of long-lead hydrologic forecasts skill (ii) lack of
long-lead SWE forecasts (iii) lack of long-lead rainy season onset forecasts
Opportunities for seasonal to multiyear water cycle prediction include leveraging of (i)
long-lead ENSO forecasts (ii) hydrologic initial conditions (e.g. TWS data assimilation)
and (iii) hydrologic forecasts for anticipating crop production shocks.

25



Acknowledgements

(1)
(2)

Colleagues at CHC, NASA/UMD, NOAA ESRL, EROS-USGS, UMD and USAID.
Support from USAID FEWSNET, NASA, SERVIR-AST, and USGS.

References:

Shukla, S., Sheffield, J., Wood, E. F., and Lettenmaier, D. P.: On the sources of global land surface hydrologic
predictability, Hydrol. Earth Syst. Sci., 17, 2781-2796, https://doi.org/10.5194/hess-17-2781-2013, 2013.

Lee et al 2018 Identification of symmetric and asymmetric responses in seasonal streamflow globally to ENSO phase,
Environ. Res. Lett. 13 044031 DOI 10.1088/1748-9326/aab4ca

Arsenault, K. R., and co-authors (2020): The NASA Hydrological Forecast System for Food and Water Security
Applications, Bulletin of the American Meteorological Society, 101(7), E1007-E1025.

Shukla, S., and co-authors (2020): Improving early warning of drought-driven food insecurity in southern Africa using
operational hydrological monitoring and forecasting products, Nat. Hazards Earth Syst. Sci., 20, 1187-1201,
https://doi.org/10.5194/nhess-20-1187-2020, 2020.

Cook, B. 1., K. Slinski, C. Peters-Lidard, A. McNally, K. Arsenault, and A. Hazra, 2021: The Efficacy of Seasonal Terrestrial
Water Storage Forecasts for Predicting Vegetation Activity over Africa. J. Hydrometeor., 22, 3121-3137,
https://doi.org/10.1175/JHM-D-21-0046.1.

Donghoon Lee, Frank Davenport, Shraddhanand Shukla, Greg Husak, Chris Funk, Laura Harrison, Amy McNally, James
Rowland, Michael Budde, James Verdin, 2022: Maize yield forecasts for Sub-Saharan Africa using Earth Observation data
and machine learning, Global Food Security, (33), 2022, 100643, ISSN 2211-9124,

Hazra, A., McNally, A, Slinski, K., Arsenault, K. R., Shukla, S., Getirana, A., Jacob, J. P., Sarmiento, D. P., Peters-Lidard, C.,
Kumar, S. V., Koster, R. D., 2023. NASA's NMME-based S2S hydrologic forecast system for food insecurity early warning in
southern Africa. Journal of Hydrology. 26


https://doi.org/10.1016/j.gfs.2022.100643
https://doi.org/10.1016/j.jhydrol.2022.129005

Thank you!

Shrad Shukla: sshukla@ucsh.edu
@shraddhanand @climatehazards

27



Performance of sub-national scale crop yield prediction

Mar Jul
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Blue = lower error
Red = higher error
gray = “no skill”

Source: Donghoon
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Performance of FLDAS-Forecasts

Hydrologic forecasts
based on NMME
climate forecasts
improve the skill
beyond ESP which is

based on climatology.

Application of
multimodel climate
forecasts provides
improvement relative
to a single model.

OND (L-0)

ND]j (L-1)

DJF (L-2)

Source: Hazara et al., 2023
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