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Can AMOC variability drive
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Arctic Sea Ice Change

2021 ARCTIC SEA ICE SUMMER MINIMUM
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Modes of Arctic Sea Ice Loss

Summer Mode Winter Mode
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FIG. 1. (a) March (blue), September (red), and annual mean (black) Northern Hemisphere sea ice extent, 1979-2016. Shaded regions

indicate plus and minus one standard deviation. Linear sea ice concentration trends (% decade™ ") in (b) September and (c) March, 1979-2016.
Black contours show the mean sea ice edge.

Onarheim et al. 2018




Spreading of Atlantic water in the Arctic

Atlantic Water at the surface Atlantic Water
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Timmermans and Marshall, 2020



Atlantification of the Barents Sea:
Sea ice retreat with Atlantic Water (Heat) Transport increase
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Arthun et al. 2012



Atlantification of the Eastern Eurasian Basin

Early 2000s

Mid-2010s
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Increased penetration of Atlantic Water, reduction in sea-ice cover, greater
vertical mixing, vertical heat flux from the Atlantic layer into the surface layer

Polyakov et al. 2017
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NAQ index
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Mass Loss from the Greenland Ice Sheet:
surface mass balance plus dynamic changes

Mass balance of the Greenland Ice Sheet
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Shepherd et al. 2020, Mankoff et al. 2021



Increased net Increased ice
surface melt, SMB discharge, D
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Straneo and Heimbach, 2013
Arctic Report Card, 2021



Increased net Increased ice
surface melt, SMB discharge, D
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Straneo and Heimbach, 2013
Arctic Report Card, 2021
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Iceland’s Glaciers and North Atlantlc Cooling

North Atlantic Cooling is Slowing Down Mass Loss of e
Icelandic Glaciers

Brice Noél! (), Gudfinna Adalgeirsdottir? ', Finnur Pélsson? (*, Bert Wouters'”
Stef Lhermitte® ', Jan M. Haacker®, and Michiel R. van den Broeke!
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Hypothesis: Cold blob
drove a reduction in ice

loss from Iceland
Noel et al. 2022



Iceland’s Glaciers and North Atlantlc Cooling

North Atlantic Cooling is Slowing Down Mass Loss of
Icelandic Glaciers

2011-2019

Brice Noél! (), Gudfinna Adalgeirsdottir? ', Finnur Pélsson? (*, Bert Wouters'”
Stef Lhermitte® ', Jan M. Haacker®, and Michiel R. van den Broeke!
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Iceland’s Glaciers and the AMOC
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Increased ocean-driven melting of glaciers leads to
dynamic mass loss

Increased ocean heat Increased surface melt
transport to a glacier /

Increased submarine melting

!

Terminus retreat

and potentially
dynamic ice loss




Glacier response
depends on geographic
parameters, glacier
dynamics as well as
oceanic and atmospheric
forcing

Carr et al. 2017; Porter et al. 2018; Catania et al. 2018

Slater and Straneo, submitted



Greenland rate of loss and atmospheric/oceanic variability

Discharge

Mass term anomaly (Gt/year)
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Updated from Straneo and Heimbach, 2013 — Ice loss (Mankoff et al. 2021); Fylla updated from Ribergaard (2014) using annual NAFO SCR
reports by J. Mortensen; SPG Heat content EN4, AMO and NAO from climate data ucar.



Investigating Ice Sheet Response to Atmospheric and Oceanic Forcing

Extrapolation of properties in fjords
25T p Retreat function of ocean and atmosphere
.y ) AL = K x A(Q%*TF)
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Slater et al., 2019,2020




Ocean Forcing of
Helheim Glacier
(SE Greenland)

Assumption:
Properties in fjord
= Properties on
shelf above sill
depth

ocean temperature ((C)

Slater et al. 2019
Nowicki et al. 2019



Greenland Ice Sheet Model Projections in AR6 _);
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Papers: Ocean Forcing Greenland: Slater et al. 2020; Model Selection Bartel et al. 2020;
Protocol: Nowicki et al. 2020; see The Cryosphere Special Issue ISMIP6



Summary AMOC, Sea-ice and Land-Ice

Increased AW transport into Barents Sea and Arctic (eastern) leads to
decreased wintertime sea-ice

Not a simple relation between AMOC and AW transport into the Barents Sea
and Arctic

Surface mass balance of Arctic/Greenland glaciers affected by air
temperatures over ice (potential indirect influence by the ocean)

Dynamic glacier retreat influence by atmosphere and fjord properties which
are partly tied to shelf properties and hence AMOC?



