Understanding moist convection-environment interactions from high-resolution modeling and observations

US CLIVAR summit
Yang Tian
National Center for Atmospheric Research
03/14/2022
Moist convection and its role in climate system

Cloud processes contribute to one of the largest uncertainties in climate projection

Fig. 1. Interactions between various processes in the climate system.

Arakawa and Schubert 1974
Gaps in convective process understanding and how to address them

- Controlling factors of entrainment mixing and how to represent it in convection scheme
 - An idealized high-res modeling framework + linear response function

- What determines the diurnal cycle of convection and precipitation and how to improve its representation in climate models
 - A theoretical plume model forced with observational data to investigate shallow to deep transition
 - A new tracking algorithm is developed to investigate mechanism of convective aggregation

- Potential usage of machine learning to automatically identify model bias in precipitation
Scientific question

What are the controlling factors of entrainment mixing? How to disentangle the relative role of each factor in contributing to the turbulent mixing between clouds and environment?
Cloud mass flux and its thermodynamical and dynamic properties are changed due to mixing with environmental air

Entrainment representation is consequential to general circulation model’s (GCM) behavior, which is among the most uncertain processes in climate projections

Complicated due to statistical confounding
Entrainment representation—at the core of convection parameterization

- Large Eddy Simulation: System for Atmospheric Modeling (Khairoutdinov and Randall 2001), resolves large eddies that carry most turbulent energy

- Initial conditions and large-scale forcing: BOMEX field campaign, quasi-steady state shallow convection

- 6.4 x 6.4 km, 50m horizontal resolution, 25m vertical resolution, 1s temporal resolution
Experiment design step 2 — Release particles

• Release Lagrangian particles into the simulated cloud field, 20 per grid box, totaling 32 million

• Combine particle trajectory with 3D output from cloud simulation
Experiment design step 3 — Cast particles into spectral plumes

Think of each parcel group as a sub-plume
Experiment design step 4 — Create perturbed runs

- Gaussian-shape temperature perturbation: centered at 975m with +0.25K peak value.
- Repeat step 1-3 to obtain cloud statistics
One single parcel group

\[\frac{\delta \epsilon}{\epsilon} = -\frac{\delta w}{w} - \frac{\delta d}{d} \]

Proposed a new entrainment formula that is used in the latest EDMF-MYNN convection scheme in WRF to improve shallow cloud representation.

Also proposed a new updraft model for velocity, both can be incorporated into a unified scheme in climate models.

\[\frac{\delta \epsilon}{\epsilon} = -\frac{\delta w}{w} - \frac{\delta d}{d} \]

\[\epsilon_i = \frac{\alpha_i}{w_i d_i} \]
Scientific question

What are the controlling factors of convection upscaling? E.g. Shallow to deep transition, convective aggregation. How to disentangle the relative role of each parameter in contributing to the convective development?
Integrate observations and theories to understand shallow-to-deep convection transition in Amazon rainforest

Analysis is done over 150km domain centered at ARM site, classification is based on the diurnal cycle of precipitation radar/cloud radar cloud top heights over daytime (0800-1800LST)

Dataset used:
- RWP-WACR-ARSCL
- SIPAM precip radar
- Radiosonde
- GOES-13 4km
- MET
- QCECOR
- GNDRAD
- SKYRAD
- VARANAL
- Doppler Lidar
First time using Doppler-lidar measured cloud base initial velocity to constrain the dynamical evolution of a plume model

Proposed a new control of convection depth through vertical wind shear in addition to the entrainment rate and lower troposphere relative humidity

This observational analysis framework can be directly consulted to evaluate Single Column Models (SCM)
A tracking algorithm based on S-band radar reflectivity is developed to explicitly track the behavior of convective aggregation.

Results demonstrate that cluster-cluster interaction can be important for the diurnal cycle of precipitation.
Scientific question

How to properly use machine learning techniques to help with convective process understanding?
Our newly developed GAN-style machine learning technique (RADA) can automatically identify bias and correct simulation bias diagnostically.
Future perspective — An integrative framework to improve the convective process understanding and its representation in GCMs

Other issues to address:
Convective organization and memory;
Land-convection coupling;
Unified cloud representation across multiple temporal and spatial scales

ytian@ucar.edu