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FiG. 1. Interactions between various processes in the climate
system.

Arakawa and Schubert 1974
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Moist convection and its role in climate system
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Cloud processes contribute to one of the largest uncertainties
in climate projection

Future Prospects




Introduction

Gaps in convective process understanding and how to address them

* Controlling factors of entrainment mixing and how to represent it in convection scheme
» An idealized high-res modeling framework + linear response function

* What determines the diurnal cycle of convection and precipitation and how to improve its
representation in climate models

» A theoretical plume model forced with observational data to investigate shallow to deep
transition

» A new tracking algorithm is developed to investigate mechanism of convective
aggregation

* Potential usage of machine learning to automatically identify model bias in precipitation
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Scientific question

What are the controlling factors of entrainment mixing? How to disentangle
the relative role of each factor in contributing to the turbulent mixing between

clouds and environment?
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Entrainment representation—at the core of convection parameterization

Entrainment process
(turbulent exchange between
clouds and environment)

Cloud mass flux and its thermodynamical and dynamic properties are changed due to
mixing with environmental air

Entrainment representation is consequential to general circulation model’s (GCM)
behavior, which is among the most uncertain processes in climate projections

Complicated due to statistical confounding



Idealized Modeling

Entrainment representation—at the core of convection parameterization

* Large Eddy Simulation: System for Atmospheric Modeling (Khairoutdinov and Randall 2001), resolves large
eddies that carry most turbulent energy

* Initial conditions and large-scale forcing: BOMEX field campaign, quasi-steady state shallow convection

* 6.4 x 6.4 km, 50m horizontal resolution, 25m vertical resolution, 1s temporal resolution

3 hour 5min 3 hour 5min
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Experiment design step 2 — Release particles

» Release Lagrangian particles into the simulated cloud
field, 20 per grid box, totaling 32 million

« Combine particle trajectory with 3D output from cloud
simulation

Langhans et al. 2015
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Experiment design step 3 — Cast particles into spectral plumes

Think of each parcel group as a sub-plume

Future Prospects
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Experiment design step 4 — Create perturbed runs

- (Gaussian-shape temperature perturbation: centered at 975m with +0.25K peak value.

* Repeat step 1-3 to obtain cloud statistics
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Linear response function to identify controlling factors of entrainment process

One single parcel group All parcel groups
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de/e = —dw/w — dd/d

Proposed a new entrainment formula that is used In the e - :
latest EDMF-MYNN convection scheme in WRF to B R et B g
iImprove shallow cloud representation

Also proposed a new updraft model for velocity, both de/e = —dw/w — dd/d | | € =
can be incorporated into a unified scheme in climate
models.
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Scientific question

What are the controlling factors of convection upscaling? E.g. Shallow to
deep transition, convective aggregation. How to disentangle the relative role

of each parameter in contributing to the convective development?




Integrate observations and theories to understand shallow-to-deep
convection transition in Amazon rainforest

RWP-WACR-ARSCL cloud radar S-band precip radar
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Analysis is done over 150km domain centered at ARM site, classification is based on the diurnal
cycle of precipitation radar/cloud radar cloud top heights over daytime (0800-1800LST)



Employ theoretical plume model to disentangle contributing factors

Conservation of energy
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First time using Doppler-lidar measured cloud base initial velocity to constrain the dynamical evolution of a
plume model

Proposed a new control of convection depth through vertical wind shear in addition to the entrainment rate
and lower troposphere relative humidity

This observational analysis framework can be directly consulted to evaluate Single Column Models (SCM)
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A tracking algorithm based on S-band radar reflectivity is developed
to explicitly track the behavior of convective aggregation

Feature Initialize tracks Go to next time
detection, echo based on I step, determine
top >2.5km features feature action
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Results demonstrate that cluster-cluster interaction can be important for the diurnal cycle of precipitation
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Scientific question

How to properly use machine learning techniques to help with convective

process understanding?
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Observational

Machine Learning Future Prospects

Apply machine learning techniques to identify precipitation simulation bias
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Sample (5 years, same month)

x (03 Jan 1982)

SamRIe =
NS

= Bias Corrector

ke

\_ J

y (13 Jan 1983)

Backpropagation
minimize error of D

Discriminator

. Observation? o narative adversarial

Simulation?

network (GAN)

G(x)'(03 Jan 1982)

g

N

Backpropagation
maximize error of D

(a) Average Intensity

bservation

RMSE=0.9

g 122 100
1
r=0.94 o> \g38s

M2gA0A
44 e Int
) (mmid)
B 3.
W 15

Our newly developed GAN-style machine

r=0.56
RMSE=6.29

maxs
(x10 mm)

learning technique (RADA) can automatically

identify bias and correct simulation bias
diagnostically

B 15




Introduction |dealized Modeling Observation Machine Learning Future prospects

Future perspective — An integrative framework to improve the convective process
understanding and its representation in GCMs

Observation: validations LES modeling: mechanism, theory

Other issues to address:

Convective organization and
memory;

Land-convection coupling;

Machine learning: scale-aware
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