

Understanding Arctic Ocean changes with emerging modeling capabilities

Qiang Wang

Alfred Wegener Institute (AWI), Bremerhaven, Germany

Thanks to my collaborators Sergey Danilov, Thomas Jung, Nikolay Koldunov, Xinyue Li, Vasco Müller, Dmitry Sidorenko & Claudia Wekerle (AWI) Qi Shu, Shizhu Wang (FIO)

X (km from 135°E/45°W)

Morison et al. 2021, JPO

Observational data taken from Proshutinsky et al., 2019, JGR

Background: warming & Arctic Atlantification

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

- Idealized simulations to understand Arctic Ocean response to wind forcing and sea ice decline
- Recent changes in the upper Arctic Ocean
- Changes of the Arctic Ocean in future warming climate
- Arctic Ocean modeling: status and prospect

Ocean response to winds

Wang et al. 2022, FMS

Sea ice condition influences the ocean response of the und meeresforschung

Wind perturbation experiments with different sea ice conditions Arctic Oscillation forcing as an example

14

Difference in SSH & velocity

Wang 2021, JGR

- Idealized simulations to understand Arctic Ocean response to wind forcing and sea ice decline
- Recent changes in the upper Arctic Ocean
- Changes of the Arctic Ocean in future warming climate
- Arctic Ocean modeling: status and prospect

Wind variability in the early 21st century

Wang et al. 2022, FMS

Impact of sea ice decline: Sensitivity experiments

Two simulations:

- **Historical simulation (hindcast)** 1.
- Thermal forcing over the Arctic Ocean: climatology 2.

Sea ice decline \rightarrow

Freshwater source (relative to climatological ٠ condition)

> 8 6

2 0 -2

> -6 -8

Mediating ocean surface stress

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Wang et al. 2022, FMS

Impact of sea ice decline: decadal changes

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Impact of sea ice decline: circulation modes

EOF of annual SSH in the Arctic (for 2004-2019)

historical simulation

When sea ice decline eliminated

2000 to 2019 change

Wang et al. 2022, FMS

Eastern EB temperature

Wang et al. 2020, GRL (Period updated)

- Idealized simulations to understand Arctic Ocean response to wind forcing and sea ice decline
- Recent changes in the upper Arctic Ocean
- Changes of the Arctic Ocean in future warming climate
- Arctic Ocean modeling: status and prospect

Sea ice dynamic effect continues in the future

(c) SSP126

(e) SSP370

Arctic "Ocean" amplification

°C

HELMHOLTZ

ASSOCIATION

Temperature difference, 2081-2100 minus 1981-2000, SSP585

Global Ocean Arctic Ocean **Depth** ranges AOAF OHT (°C) (°C) (m) 200 -SSHF 3.15 ± 1.55 OHT + SSHF OHT and SSHF [TW] 0 - 150 1.0 ± 0.4 2.86 ± 0.58 (Polar Surface Water) 100 0-300 2.46 ± 0.50 3.26 ± 1.50 1.3 ± 0.4 0-700 1.7 ± 0.6 1.80 ± 0.31 3.11 ± 1.36 2.89 ± 1.25 -100 150-900 1.27 ± 0.21 2.3 ± 0.9 (Atlantic Water) 0-2000 0.90 ± 0.14 2.3 ± 1.0 2.00 ± 0.88 -200 2000 2100 1950 2050 Year

Shu et al., in press, Science Advances

Arctic "Ocean" amplification

Time of Emergence (ToE) of AOA

CMIP6 models

CESM large ensemble

- Idealized simulations to understand Arctic Ocean response to wind forcing and sea ice decline
- Recent changes in the upper Arctic Ocean
- Changes of the Arctic Ocean in future warming climate
- Arctic Ocean modeling: status and prospect

Arctic Ocean in CMIP6 vs. CMIP5

Temperature profiles in CMIP6 and CMIP5

show that there is no clear improvement from CMIP5 to CMIP6, in both coupled and ocean-alone simulations.

- Large model spread
- The layer of warm Atlantic Water remains too deep and thick in most of the models in CMIP6.

Ilicak et al, 2016; Shu et al, 2019; Khosravi et al, 2022; Shu et al, in preparation

Depth-time plot of temperature

Increasing horizontal resolution from 24km to 4.5km reduces the deepening trend of Atlantic Water layer

Wang et al, 2018, GMD

Resolving Arctic Ocean with km scale

Wang et al, 2020, GRL

Summary

- Sea ice decline \rightarrow strengthens the Arctic Ocean decadal changes
- Sea ice decline \rightarrow strengthens the circulation variability (*circulation modes*)
- Arctic Ocean Amplification (AOA) has emerged
- km–scale simulations became available and showed promising results.

Sea ice condition influences the ocean response of the und meeresforschung

Beaufort High forcing

Wang et al. 2020, GRL

Warming continues in the future

Khosravi et al., 2022, Earth's Future

Projections with large uncertainties

Khosravi et al., 2022, Earth's Future S. Wang et al., under review, Earth's Future

HELMHOLTZ

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG