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Types of uncertainty and how to estimate them

● Random uncertainties associated with observation errors, chaotic error 
growth, model parameterizations, representation error, sub-optimal data 
assimilation algorithms, etc (not including systematic bias)

○ Estimated using ensemble spread in an ensemble data assimilation system
■ Only works if ensemble data assimilation (DA) system is well-tuned so that ensemble 

spread matches innovation statistics (inflation, localization)
● Systematic biases associated with model errors

○ Estimated via slowly varying component of analysis increments
■ Only works when observations are available to correct for these biases.



Estimating random component of analysis uncertainty 
with ensemble spread - experience with 20CR
● Multiplicative inflation used to represent missing or under-represented 

sources of random error in the ensemble DA system..  Values need to be 
observation-network dependent!

○ No inflation where there are no obs, more inflation where obs are dense.
● 20CRv2 used preset constant values that varied with time
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20CRv2

●Unrealistic signals in uncertainty
●Inhibits accurate studies of 

significance of long-term trends

Atmospheric layer temperature anomalies, Northern Hemisphere



‘Relaxation to prior spread’ posterior inflation

(RTPS, Whitaker and Hamill 2012) 

which implies  

Adapts to observing network: inflation factor = 1 if no obs are assimilated, 
increases as reduction of ensemble spread by assimilation of obs increases. 

α set to 0.9 for entire period in 20CRv3
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https://doi.org/10.1175/MWR-D-11-00276.1.


Observing network



20CRv3 - Inflation factor using RTPS with α=0.9



Innovation statistics for 20CRv3
(Fig 4 from Slivinski et al 2021 
https://doi.org/10.1175/JCLI-D-20-0505.1) 

● if the observation and background errors 
are uncorrelated and unbiased, then 
RMSDactual should be equivalent to 
RMSDexp = sqrt(spread + oberror)

● As obs density increases (blue curve), 
both actual and expected RMSE go 
down, correlation is > 0.9 (0.97 in NH).

https://doi.org/10.1175/JCLI-D-20-0505.1


Atmospheric layer temperature anomalies, Northern Hemisphere

new version old version

● More accurate, consistent estimates of uncertainty
● Can make stronger statements about trends
● Other relevant changes in 20CRv3 - stochastic physics, adaptive localization 

length scale

20CRv2 vs 20CRv3 time series



Validation against independent upper air obs at 
Lindenberg, Germany (Fig 8 from Slivinski et al 2021)

● RMSD (dots) binned by ensemble spread (x-axis).
● Diagonal line expected RMSD for perfect obs
● Shaded area expected RMSD for 15>ob error>25m assuming 

accurate ensemble spread
● Dots above overconfident, below underconfident.



Interaction between systematic bias/obs network on time series
Spurious jumps apparent when obs systems come online that correct for model biases 

PWAT (1997-2007 mean - 1987-1997 mean)

PWAT increment

NOAA 15

NOAA 16

Influence of changes in observations on precipitation: A case 
study for the Climate Forecast System Reanalysis (CFSR) 
Zhang et al 2012 (http://dx.doi.org/10.1029/2011JD017347)

CFS has dry bias in tropics - expressed in reanalysis 
prior to AMSU in 1999



Using ML to learn model errors, build in-line 
model error correction (Tse-Chun Chen PSL)
● Following approach outlined in Bonavita and Laloyaux 2020: 

(https://doi.org/10.1029/2020MS002232) train column-based NN 
correction using analysis increments in data-rich period.

● Approach applied to UFS by Chen et al 2022 (manuscript in preparation).
● Currently building an inline correction interface for UFS model.
● For reanalysis, applying in-line correction should reduce spurious jumps in 

time series when new observations are introduced that correct for model 
biases.

Zonal mean/time mean 
cross-section of column NN 
corrections 

Time mean forecast RMSE % 
change as a function of lead time 
(neg is RMSE reduction)

https://doi.org/10.1029/2020MS002232


Critical requirements for a consistent (representation of 
uncertainty in) Earth system reanalysis

● For a consistent representation of (random) uncertainty:
○ An ensemble data assimilation system that adapts to the changing observing 

network to maintain consistent spread/error relationships.
■ Ensemble DA system spread is very sensitive to inflation (& localization) 

parameters. The optimal values of the  parameters are sensitive to the 
observing network.

● To avoid spurious jumps/trends in time series due to the interplay between model bias 
and changes in the observing network:
○ An unbiased background forecast for quantities that are constrained by 

observations in the era of densest observations.
■ Systematic model bias is expressed in analysis increments if obs are not 

sufficient to correct for it. 
■ ML algorithms trained on analysis increments in the dense observation period 

can be used to develop an in-line model error correction to reduce background 
forecast biases.


