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Understanding Land Predictability
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Understanding Land Predictability

The land is a damped system, in contrast to some aspects of the atmosphere

* Large anomalies tend to evolve toward normal in predictable ways
* Wet land states (soil/snow) drain, run off, and evaporate/sublimate faster
* Dry states drain and evaporate slower, allowing for recharge

» Such negative or restorative feedbacks can add to predictability (e.g.,

Hasselmann, 1976) or at least sustain it
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Understanding Land Predictability

NCAR
UCAR

In parts of the world, the annual cycle drives predictable land moisture fluxes
 The climate drivers at the start of a cycle carry information about the land states at the

end of it ... and sometime beyond.
winter climate spring | early summ erqu'nmer to fall
snowpac runoff soil moisture
'E~ Crystal R Ab Avalanche Crk Nr Redktone', CO (009081600)
1250
£
e S
% 1000 SWE
B
o SWE  SM
$ 0 P \
8 \sm
SWE
c
@ 500 \\
s SWE A SM
-8 250 ,ué S' 0 \sm
= P—T % swe Sh—, SWEN] P
[ P
: \sm\ S \pkih%:—"/
0 SWE —no—no—no_ RO w20 == RO SWE =k SUE—=$ViE
0| N D J F M A M J J A S
month

Modeled water balance: precipitation (P), runoff (RO),
snow water equivalent (SWE), soil moisture (SM)
Wood et al, HESS 2016

Crystal River in winter




The practice of land prediction emphasized IC predictability

Traditional operational long-range (S2S) forecasts
have harnessed IC predictability

* ‘Extended’ Streamflow Prediction (ESP) first used at

CADWR and CNRFC in the mid 1970s
* eg, Day, 1985; Wood et al, 2016

* NWS began ESP development in 1975
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Ensemble hindcasts can be used to
understand predictability
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Exploring the sources of hydrologic predictability

Demonstration focus on two different watersheds
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An ensemble approach for attribution of hydrologic prediction
uncertainty
Andrew W. Wood'? and Dennis P. Lettenmaier’
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Exploring the sources of hydrologic forecast uncertainty

climate forecasts more

important than initial — ESP (knownIC)  — revESP (known FORC)
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Seasonally varying influence of IC oKl of Wean 3mo Runofi Forecast
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Skill of Mean 3mo Runoff Forecast
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Describing the influence of predictability source using forecast skill elasticity
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Actual Interannual Forecast Skill for Climate using Large Ensembles

(Lead Mo 7-11) (Lead Mo 12-16)
* Recent exploration of MJJAS ONDJF
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interannual skill using two
40-member systems
(DePreSys3, CESM-DPLE)
reveals potentially useful
skill for some regions,
particularly during active
ENSO seasons
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* To be explored further
within CESM’s Earth System
Prediction Working Group:
Seasonal-to-Multiyear Large
Ensemble (SMYLE) Project

Dunstone et al. (2020)

slide material from Steve Yeager, NCAR



Total water storage (TWS) interannual prediction skill

Month 19 skill (detrended) can be significant in places ... (Yeager et al, 2022)
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Predictability: annual precipitation versus land moisture storage

Modeled soil moisture: annual precip greater than storage = regular refill > memory loss
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Multi-year prediction applications in water management

In applied/operational
contexts,

there is some evidence
of multi-year memory
in SW US river basins
such as the Colorado

How can improvements to streamflow
forecasts effect reservoir operations in
the Colorado River Basin?

- Testbed establishes framework for
testing performance of streamflow
forecasts and modelled operations
in the Colorado River Basin (CRB)

- Evaluate current and experimental
streamflow forecasting methods
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initialized predictions

Baker, SA, AW Wood, B Rajagopalan, J
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Prediction Testbed: a tool for improving water
management through benchmarking seasonal
to interannual forecasts of streamflow and

reservoir system projections, J. Amer. Water
Res. Assn. (in review)



Working toward an understnading of terrestrial decadal predictability

We know enough to
develop expectations for
when and where we
should find
terrestrial/hydrologic
predictability

For example ...
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predictability from both
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and sustained by land
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Land Storage/Annual Precipitation =

Wood et al, 2022 (in prep)




* |tis helpful to understand the components of land surface predictability
— Initial condition, boundary forcing, internal land process feedbacks (damping)
— Starting with an expectation of predictability can help us identify whether our prediction skill
makes sense (or doesn’t)

* S2S to decadal hydrologic predictability varies in time, by season, by climate system
mode, and by (hydroclimate) location.

* Multi-year semi-skillful forecasts for the land surface are possible but not everywhere
and always

— governed by conditionally skillful climate forecasts
— in locations where the land hydroclimate is conducive
— ‘forecasts of opportunity’

° Multi-year Earth System knowledge and science is still developing, with more focus
initially on climate system aspects such as ENSO, SSTs) — but such predictability is
degraded in translation to continental or regional climate, and associated hydrology

— conversations with potential stakeholders should be clear about progress

— e.g., at present we’re comfortable with multi-year to decadal temperature forecasts and
some temperature-impacted hydrology



