

Global Impacts of **Recent Southern Ocean Cooling**

Xiyue (Sally) Zhang

Department of Earth and Planetary Sciences Johns Hopkins University

US CLIVAR Summit July 31, 2023

Clara Deser (NCAR), Sarah Kang (UNIST), Yue Yu (SIO)

The Southern Ocean (SO) surface has cooled since late 1970s

sallyz@jhu.edu

Zhang et al. (in prep)

Paleoclimate proxy shows SO SST multi-decadal variability With tree ring records from Tasmania

sallyz@jhu.edu

Latif et al. (2013)

Previous studies suggest a robust response due to SH extratropical forcing

Previous studies suggest a robust response due to SH extratropical forcing

sallyz@jhu.edu

Dynamic ocean

Kang et al. (2019)

sallyz@jhu.edu

Data: ERSSTv3b; Zhang et al. (2021)

sallyz@jhu.edu

Data: ERSSTv3b; Zhang et al. (2021)

In affect the tropical warming patterns and **Commate sensitivity**

In affect the tropical warming patterns and **Commate sensitivity**

Negative Feedback

SO surface cooling may explain model's inability to simulate observed Antarctic sea ice expansion

sallyz@jhu.edu

Zhang et al. (2021)

Using Southern Ocean pacemaker experiment (SOPACE) to study **SO teleconnection**

ERSSTv3b 1979-2013 trends

We nudge SST at each grid point in SO to observed monthly anomaly + CESM1 mean state.

sallyz@jhu.edu

By including observed SO SST evolution in historical simulations

Using Southern Ocean pacemaker experiment (SOPACE) to study **SO teleconnection**

By including observed SO SST evolution in historical simulations

ERSSTv3b 1979-2013 trends

We nudge SST at each grid point in SO to observed monthly anomaly + CESM1 mean state.

sallyz@jhu.edu

Radiatively-forced response + SOdriven response

sallyz@jhu.edu

Radiatively-forced response + SOdriven response

Radiatively-forced response

[SOPACE1]

Radiatively-forced response + SOdriven response

Radiatively-forced response

SO-driven response

Why is the response so weak in the tropical Pacific?

Pacemaker experiment

sallyz@jhu.edu

Idealized experiment

300[°]E 120 E 240 E 60 E 180[°]E

Zhang et al. (2021); Kang et al. (2023); Kang et al. (2019)

VS

CESM1 has a subtropical low cloud bias in the Pacific

Subtropical stratocumulus cloud feedback west of South America

CMIP version	Model name	Institution	CF _{wSA}
CMIP6	CESM2-WACCM	NCAR, USA	11.95
CMIP6	CESM2	NCAR, USA	11.36
CMIP6	CESM2-FV2	NCAR, USA	9.31
CMIP6	NorESM2-MM	NCC, Norway	8.49
CMIP6	CESM2-WACCM-FV2	NCAR, USA	8.15
ISCCP-FH & OISST 2 (observational data)			7.51
CERES-EBAF 4.1 & OISST 2 (observational data)			7.30
CMIP5	IPSL-CM5B-LR	IPSL, France	7.11
CMIP6	NorESM2-LM	NCC, Norway	6.84
CMIP6	KIOST-ESM	KIOST, South Korea	6.82
CMIP5	ACCESS1-0	CSIRO and BOM, Australia	6.32
CMIP5	MIROC-ESM	AORI, NIES, and JAMSTEC, Japan	6.10
CMIP5	CSIRO-Mk3-6-0	CSIRO and BOM, Australia	6.09
CMIP5	MIROC-ESM-CHEM	AORI, NIES, and JAMSTEC, Japan	6.09
CMIP6	GFDL-CM4	GFDL, USA	5.92

CMIP5	CESM1-FASTCHEM	NCAR, USA
CMIP6	BCC-ESM1	BCC, china
CMIP6	AWI-CM-1-1-MR	AWI, Germany
CMIP5	CCSM4	NCAR, USA
CMIP5	CESM1-BGC	NCAR, USA
CMIP6	EC-Earth3-Veg	EC-Earth consortium
CMIP5	CESM1-CAM5	NCAR, USA

3.57	
3.45	
3.45	
3.34	
3.27	
3.19	
3.11	

CESM1 has a subtropical low cloud bias in the Pacific

Subtropical stratocumulus cloud feedback west of South America

CMIP version	Model name	Institution	CF _{wSA}
CMIP6	CESM2-WACCM	NCAR, USA	11.95
CMIP6	CESM2	NCAR, USA	11.36
CMIP6	CESM2-FV2	NCAR, USA	9.31
CMIP6	NorESM2-MM	NCC, Norway	8.49
CMIP6	CESM2-WACCM-FV2	NCAR, USA	8.15
ISCCP-FH & OISST 2 (observational data)			7.51
CERES-EBAF 4.1 & OISST 2 (observational data)			7.30
CMIP5	IPSL-CM5B-LR	IPSL, France	7.11
CMIP6	NorESM2-LM	NCC, Norway	6.84
CMIP6	KIOST-ESM	KIOST, South Korea	6.82
CMIP5	ACCESS1-0	CSIRO and BOM, Australia	6.32
CMIP5	MIROC-ESM	AORI, NIES, and JAMSTEC, Japan	6.10
CMIP5	CSIRO-Mk3-6-0	CSIRO and BOM, Australia	6.09
CMIP5	MIROC-ESM-CHEM	AORI, NIES, and JAMSTEC, Japan	6.09
CMIP6	GFDL-CM4	GFDL, USA	5.92

CMIP5	CESM1-FASTCHEM	NCAR, USA	3.57
CMIP6	BCC-ESM1	BCC, china	3.45
CMIP6	AWI-CM-1-1-MR	AWI, Germany	3.45
CMIP5	CCSM4	NCAR, USA	3.34
CMIP5	CESM1-BGC	NCAR, USA	3.27
CMIP6	EC-Earth3-Veg	EC-Earth consortium	3.19
CMIP5	CESM1-CAM5	NCAR, USA	3.11

sallyz@jhu.edu

Kim et al. (2022)

CESM1 has a subtropical low cloud bias in the Pacific

Subtropical stratocumulus cloud feedback west of South America

CMIP version	Model name	Institution	CF _{wSA}
CMIP6	CESM2-WACCM	NCAR, USA	11.95
CMIP6	CESM2	NCAR, USA	11.36
CMIP6	CESM2-FV2	NCAR, USA	9.31
CMIP6	NorESM2-MM	NCC, Norway	8.49
CMIP6	CESM2-WACCM-FV2	NCAR, USA	8.15
ISCCP-FH & OISST 2 (observational data)			7.51
CERES-EBAF 4.1 & OISST 2 (observational data)			7.30
CMIP5	IPSL-CM5B-LR	IPSL, France	7.11
CMIP6	NorESM2-LM	NCC, Norway	6.84
CMIP6	KIOST-ESM	KIOST, South Korea	6.82
CMIP5	ACCESS1-0	CSIRO and BOM, Australia	6.32
CMIP5	MIROC-ESM	AORI, NIES, and JAMSTEC, Japan	6.10
CMIP5	CSIRO-Mk3-6-0	CSIRO and BOM, Australia	6.09
CMIP5	MIROC-ESM-CHEM	AORI, NIES, and JAMSTEC, Japan	6.09
CMIP6	GFDL-CM4	GFDL, USA	5.92

CMIP5	CESM1-FASTCHEM	NCAR, USA	3.57
CMIP6	BCC-ESM1	BCC, china	3.45
CMIP6	AWI-CM-1-1-MR	AWI, Germany	3.45
CMIP5	CCSM4	NCAR, USA	3.34
CMIP5	CESM1-BGC	NCAR, USA	3.27
CMIP6	EC-Earth3-Veg	EC-Earth consortium	3.19
CMIP5	CESM1-CAM5	NCAR, USA	3.11

...

- CESMi's stratocumulus cloud feedback is too weak
- CESM₂ has much stronger stratocumulus cloud feedback
- Will SOPACE with CESM₂ show a stronger tropical Pacific response?

Global SST response to observed SO cooling CESM1 vs CESM2

Global SST response to observed SO cooling CESM1 vs CESM2

Global SST response to observed SO cooling CESM1 vs CESM2

Decomposition of SST trends via surface energy budget $\rho c_{\rm p} H \frac{\partial T}{\partial t} = SW + LW - LH - SH + OHT$

 $0 = \Delta SW + \Delta LW - \Delta LH - \Delta SH + \Delta OHT,$

sallyz@jhu.edu

Kang et al. (2023)

ρ

Decomposition of SST trends via surface energy budget $\rho c_{\rm p} H \frac{\partial T}{\partial t} = SW + LW - LH - SH + OHT$

sallyz@jhu.edu

 $0 = \Delta SW + \Delta LW - \Delta LH - \Delta SH + \Delta OHT$

Kang et al. (2023)

sallyz@jhu.edu

Stippling: trends NOT significant at 95% confidence level Zhang et al. (2021); Kang et al. (2023)

0

K/dec

0.2

0.3

0.4

sallyz@jhu.edu

Stippling: trends NOT significant at 95% confidence level Zhang et al. (2021); Kang et al. (2023)

0

K/dec

0.1

sallyz@jhu.edu

0.1

Stippling: trends NOT significant at 95% confidence level Zhang et al. (2021); Kang et al. (2023)

0

K/dec

CESM2 + CMIP5 forcing

sallyz@jhu.edu

Stippling: trends NOT significant at 95% confidence level Zhang et al. (2021); Kang et al. (2023)

0

K/dec

0.1

0.2

0.3

0.4

sallyz@jhu.edu

sallyz@jhu.edu

Stippling: trends NOT significant at 95% confidence level Zhang et al. (2021); Kang et al. (2023)

30°W

30°W

30°W

sallyz@jhu.edu

Observed Antarctic sea ice trends are also better represented in SOPACE2

Summary

- The global response of observed SO surface cooling includes cooling of the southeastern tropical Pacific and Atlantic, as well as Antarctic sea ice expansion
- Observed SO surface cooling from 1979 to 2013 is partly responsible for driving cooling of the southeastern tropical Pacific SST
- The SO-tropical teleconnection is highly sensitive to the strength of the subtropical low cloud feedback
- There are implications for future warming patterns as the SO transitions from cooling to warming under increasing greenhouse gases AGU ADVANCING EARTH AND SPACE SCIEN

Geophysical Research Letters

10.1029/2020GL091235

Key Points:

RESEARCH LETTER Is There a Tropical Response to Recent Observed **Southern Ocean Cooling?**

• The global impact of recent

Xiyue Zhang^{1,2}, Clara Deser¹, and Lantao Sun³

Sarah M. Kang^{a,b,1} 🕩, Yue Yu^c 🕩, Clara Deser^{d,1} 🕩, Xiyue Zhang^e, In-Sik Kang^c, Sun-Seon Lee^{f,g}, Keith B. Rodgers^{f,g} 🕩, and Paulo Ceppi^h 🕩

Challenges and open questions

- Uncertainties in historical radiative forcing hinder our understanding of the SOtropical teleconnection (especially in the northern extratropics)
- Can we quantify the causes of SO SST multi-decadal variability (e.g., internal variability, CO2 or ozone, ice melt...)?
- What other model/resolution-dependent feedbacks can influence the SO-driven teleconnection?

Questions and feedbacks? 📧 sallyz@jhu.edu

Extra Slides

SO cooling's impact on tropical precipitation

SO cooling's impact on tropical circulation

sallyz@jhu.edu

Kang et al. (2023)

Schematic of SO teleconnection

Antarctic sea ice trends are better captured when observed SO SST trends are included

sallyz@jhu.edu

Blanchard-Wrigglesworth et al. (2022)

Origin of SO SST variability is under debate

Forced response

- Ocean heat uptake (Marshall et al., 2015; Armour et al., 2016)
- Ozone (e.g., Ferreira et al., 2015; Hartmann 2022)
- Antarctic meltwater (e.g., Bronselaer et al., 2018)

23

Origin of SO SST variability is under debate

Forced response

- Ocean heat uptake (Marshall et al., 2015; Armour et al., 2016)
- Ozone (e.g., Ferreira et al., 2015; Hartmann 2022)
- Antarctic meltwater (e.g., Bronselaer et al., 2018)

Internal variability

- Linked to tropical variability (e.g., Schneider and Deser 2018; Chung et al., 2022)
- Ocean deep convection (Latif et al., 2013; Zhang et al., 2017; Cabré et al., 2017)

Origin of SO SST variability is under debate

Forced response

- Ocean heat uptake (Marshall et al., 2015; Armour et al., 2016)
- Ozone (e.g., Ferreira et al., 2015; Hartmann 2022)
- Antarctic meltwater (e.g., Bronselaer et al., 2018)

Observations: limited coverage; some evidence from paleo records (Latif et al., 2013) **Models**: sensitive to parameterization; captured in high-resolution models (Chang et al., 2020)

Internal variability

- Linked to tropical variability (e.g., Schneider and Deser 2018; Chung et al., 2022)
- Ocean deep convection (Latif et al., 2013; Zhang et al., 2017; Cabré et al., 2017)

sallyz@jhu.edu

Sea level pressure

