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turbulent air-sea heat flux is quantified




Eddy-Mean formalism:

A A: vector of inputs needed to compute heat flux
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Filter in time or space (as suited to the problem)
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- What drives the variability of SST? (... Bishop et al 2017, Small et al
2020)

- What drives the variability of heat fluxes? (... Small et al 2019)

- Impact of heat flux variability on ocean energetics? (... Bishop et al
2020, Guo et al 2022)
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Resolvable

Needs parameterization

Almost all ocean sub-grid parameterizations: Mesoscale eddies
V . F* (Gent-McWilliams, Solomon-Redi), Submesoscale eddies (Fox- . ,

Kemper, Bodner, etc), Boundary layer (KPP, EPBL etc), Shear mixing, Note: Q 7& Q
Overflows, Bottom boundary layers, Symmetric instability ...
Sub-grid air-sea fluxes: Missing? (Gustiness literature from
atmospheric point of viewcomes the closest to addressing this).
Bulk formulae established using MOST and ~1 hour averaging
probably don’t work for all scales.




We have a IOt Of HR Coupled mOdel data_ ( ) . Gaussian filter -> roughly match spectra from
- . . * T3 . * alow res model, removes mesoscale eddies.
What if we just diagnose Q* from it~
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In our thinking there is a big (buried) assumption (for this work to have any usefulness) that the bulk flux formulae are
appropriate to use at the grid of the HR coupled model.

However, this is no worse than assuming that bulk formulae are applicable in coarse coupled model; in fact maybe it is less
WOrSe.



Double averaging, like

We have d IOt Of HR COUp|ed mOdel data. dealiasing of spectral methods
What if we just diagnose Q* from it?
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In our thinking there is a big (buried) assumption (for this work to have any usefulness) that the bulk flux formulae are
appropriate to use at the grid of the HR coupled model.

However, this is no worse than assuming that bulk formulae are applicable in coarse coupled model; in fact maybe it is less
WOrSe.



CESM-HR

20 Year Average Q*
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In long averages Q* 10-20% of the large scale flux.
Both models produce similar results.
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Some daily shapshots
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- Generally Q* goes in the same direction as flux computed from coarse variables.
- Q* can get quite large in many situations (e.g. WBCs), fluxes O(100 W/mA2).
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: . _ _ 20 Year Averages
What contributions come from different fluids? Atmosphere contribution
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Is this important?

Probably depends on who is asking.
- O(100W/m”"2) fluxes seem important, atleast for regional aspects.
- Oceanic contribution seems to project well onto mean biases.
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What’s next?

- Do results change as we increase ocean model resolution?

b
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- Can we figure out a way to represent Q* only in terms of large scale Prani Nalluri
variables? / Build a parameterization? PhD Student

Q* — Q(Am Aa) — Q(on Aa) ~ f@(AO7 Aa)

Data-Driven Equation Discovery of Ocean
Mesoscale Closures

Laure Zanna'’ and Thomas Bolton?

Stochastic-Deep Learning Parameterization of Ocean
Momentum Forcing

Arthur P. Guillaumin®' ' and Laure Zanna'

A Data-Driven Approach for Parameterizing Ocean
Submesoscale Buoyancy Fluxes

Abigail Bodner!, Dhruv Balwada?, and Laure Zanna'**

Design and implementation of a data-driven parameterization for
mesoscale thickness fluxes

Dhruv Balwada!, Pavel Perezhogin?, Alistair Adcroft®, and Laure Zanna®



Summary:

* The influence of sub-grid, defined as ocean mesoscales, heterogeneity on turbulent air-
sea heat flux is quantified. Often sub-grid variability enhances air-sea fluxes.

* This effect systematically cools the ocean by about 4 W/m2 in the global, with large
O(100)W/m2 spatiotemporal variations -> May be quite relevant regionally

 Some of the patterns of sub-grid heat fluxes project appropriately on to the model biases

 Atmospheric contribution from wind heterogeneity cools the ocean, while oceanic
contribution from sea surface temperature heterogeneity can heat or cool

ML or other approaches may provide appropriate ways to upscale bulk formulae fluxes.

 Not uncommon: Fox-Kemper et al submesoscale restratification parameterization was

derived for a single front (~O(1)km), and then upscaled to coarse model grid based on
observed density spectra.

* Should bulk flux averaging time scales be recalibrated?



Extras



CESM Compare ocean/atmos to tracer/vel

Atmosphere contribution Velocity contribution
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CM26 Compare ocean/atmos to tracer/vel

Atmosphere contribution
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5.1. Some intuition into partial filtering

To provide a some intuition into what partially filtering into ocean/atmos or tracer/vel
means, it is helpful to consider a simpler non-linearity of the type N = AB (instead of
the full bulk formula ). Here A and B may be any two model variables, for example
velocity and temperature. According to our notation we have N¢ = A B is the large-scale

B 1s the contribution of small-

non-linearity response, and N* = N — N¢ = AB — A
scale variability. Note that N* # A’B’ (using A = A+ A’), since the filter we use is not a
Reynold’s decomposition and also includes Leonard and cross terms (Germano, 1986). We

may define partially averaged contributions as N*4 = AB — A B and N*® = AB — A B.

So we get: N** = A'B+ A'B'", N*B = AB' + A’B’, and N* = AB' + A'B + A'B'.
Hence N*4=8 = N* — N*4 _ N*B — _A'B’ which comes purely from the small-scale

correlations. Also note that both N*4 and N*# have A’B’ in them.

In the context of heat flux formulae, N*4~8 = —A’B’ (which is Q*“~4) roughly cor-
responds to the part of the heat flux that results over an oceanic warm filament due to
the anomalously warmed atmosphere or anomalously fast winds above it, rather than the
large anomalous cooling flux of the warm filament that might take place just because of a

large-scale cool atmosphere above the filament (which would be accounted for by Q*9).

In fact, note that the impact of this correlated part (equivalent to A’ B’) would be present

in both Q*¢ and Q**.



