Ocean-Atmosphere Coupled Energy Budgets of Tropical Convective Discharge-Recharge Cycles

Brandon Wolding U.S. CLIVAR Summit July, 2025

Tropical Convective Discharge-Recharge Cycles

Brandon Wolding U.S. CLIVAR Summit July, 2025

Collaborators

Adam Rydbeck

Juliana Dias

George Kiladis

Maria Gehne

Fiaz Ahmed

Emily Riley-Dellaripa

Xingchao Chen

Isabel McCoy

Large-Scale "Forcing" and Convective "Response"

Multiple Equilibria of Tropical Convection

Single column model:

- Weak Temperature Gradients (WTG) approximation
- all use 301K RCE temperature profile
- initialized using different humidity profiles

Sobel et al. 2007

Moist Initial Conditions

moist, precipitating equilibrium convective heating > radiative cooling large-scale ascent

Dry Initial Conditions

dry, non-precipitating equilibrium convective heating < radiative cooling large-scale subsidence

Oscillatory Equilibria and Tropical Convection

Small domain CRM (64 x 64 km) with WTG approximation

Bernardez and Back 2025 see also Nathanael Wong and Zhiming Kuang

oscillations around a moist, precipitating statistical quasi-equilibrium "discharge-recharge cycles"

Convective Self-Aggregation

Global non-rotating aquaplanet with uniform boundary conditions

two distinct states of statistical quasi-equilibrium bi-modal distribution of CWV pulsing or oscillatory behavior around each mode "discharge-recharge cycles"

Roadmap for Today's Presentation

- 1.) Identify convective discharge-recharge cycles in observations
- 2.) Characterize the cloud population of discharge-recharge cycles
- 3.) Ocean-atmosphere energy budgets of discharge-recharge cycles

Tropical warm pool
Daily average 2.5°x 2.5°
ERA5 T and q
HYCOM SST and Θ
IMERG precipitation

offline plume model prescribed "deep inflow" entrainment

coarse large-scale measure of convective instability

Precipitation rate generally increases with increasing

but...

Wide range of precipitation rates for fixed/given value

How do precipitation and co-evolve in time?

Methodology

1.) separate data into bins of precipitation rate and

then examine

2.) bin-mean temporal tendency of precipitation and
in each bin

Discharge-Recharge Cycle

Cyclical amplification/decay of convection coupled to cyclical increases/decreases in a relevant measure of convective instability

Overlapping shallow and deep convective D-R cycles

CloudSat Echo Objects

Cloud Types determined by EO base, EO top, and EO width

Deep Convective D-R Cycle

Shallow Cumulus

Deep Convective D-R Cycle

Deep Convective D-R Cycle

Atmosphere MSE Budget

$$\left\langle \frac{\partial \overline{h}}{\partial t} \right\rangle = -\left\langle \overline{\mathbf{V}} \cdot \nabla \overline{h} \right\rangle - \left\langle \overline{\omega} \frac{\partial \overline{h}}{\partial p} \right\rangle + \mathbf{L}_{\mathbf{v}} E + H + \left\langle Q_r \right\rangle$$

Transport

Surface Radiation Fluxes

Atmosphere MSE Budget

$$\left\langle \frac{\partial \overline{h}}{\partial t} \right\rangle = -\left\langle \overline{\mathbf{V}} \cdot \nabla \overline{h} \right\rangle - \left\langle \overline{\omega} \frac{\partial \overline{h}}{\partial p} \right\rangle + \mathbf{L}_{\mathbf{v}} E + H + \left\langle Q_r \right\rangle$$

Transport

Surface Radiation Fluxes

Ocean Heat Content Budget

Transport

$$\begin{split} \left\langle \frac{\partial \overline{OHC}}{\partial t} \right\rangle &= -\left\langle \overline{\mathbf{V}} \cdot \nabla \overline{OHC} \right\rangle - \left\langle \overline{w} \frac{\partial \overline{OHC}}{\partial z} \right\rangle - A_h \nabla^2 OHC - \frac{A_z}{H} \frac{\partial \overline{OHC}}{\partial z} \\ &- \mathbf{L_v} E - H - LW|_{surface} - SW|_{surface} + SW|_H \end{split}$$

Surface Fluxes

Radiation

Atmosphere MSE Budget

$$\left\langle \frac{\partial \overline{h}}{\partial t} \right\rangle = -\left\langle \overline{\mathbf{V}} \cdot \nabla \overline{h} \right\rangle - \left\langle \overline{\omega} \frac{\partial \overline{h}}{\partial p} \right\rangle + \mathbf{L}_{\mathbf{v}} E + H + \left\langle Q_r \right\rangle$$

Transport

Surface Radiation Fluxes

+

Ocean Heat Content Budget

Transport

$$\left(\frac{\partial \overline{OHC}}{\partial t}\right) = -\left(\overline{\mathbf{V}} \cdot \nabla \overline{OHC}\right) - \left(\overline{w} \frac{\partial \overline{OHC}}{\partial z}\right) - A_h \nabla^2 OHC - \frac{A_z}{H} \frac{\partial \overline{OHC}}{\partial z} - L_v E - H - LW|_{surface} - SW|_{surface} + SW|_H$$

Surface Fluxes

Radiation

=

Ocean-Atmosphere Budget

Transport

$$\begin{split} \left\langle \frac{\partial \overline{c}}{\partial t} \right\rangle &= -\left\langle \overline{\mathbf{V}} \cdot \nabla \overline{h} \right\rangle - \left\langle \overline{\omega} \frac{\partial \overline{h}}{\partial p} \right\rangle - \left\langle \overline{\mathbf{V}} \cdot \nabla \overline{OHC} \right\rangle - \left\langle \overline{w} \frac{\partial \overline{OHC}}{\partial z} \right\rangle - A_h \nabla^2 OHC - \frac{A_z}{H} \frac{\partial \overline{OHC}}{\partial z} \\ &- LW|_{100hPa} - SW|_{100hPa} + SW|_H \end{split}$$

Radiation

How do MCSs impact ocean and atmosphere energy budgets?

supported by reduced LW cooling and enhanced surface fluxes

upper ocean rapidly losing energy by reduced SW radiation and enhanced surface fluxes

How do MCSs impact ocean and atmosphere energy budgets?

MCS are unique in their ability to rapidly discharge OHC

Variability in ocean-atmosphere column energy driven by transport processes, realized as changes in OHC

Atmospheric transports poorly represented in models with parameterized and explicit convection

Ocean-Atmosphere Coupled Energy Budgets of Tropical Convective Discharge-Recharge Cycles

While D-R cycles emerge in idealized simulations with fixed surface boundary conditions, understanding the role of upper ocean variability is key to understanding the real world manifestation of D-R cycles

Ocean-atmosphere energy budgets useful tool for understanding D-R cycles and ocean-atmosphere coupled phenomena

Budgets show atmospheric MSE transports closely tied to OHC variability

Models with both parameterized and resolved convection struggle to represent MSE transports, suggesting will struggle with OHC variability and coupling

Multiple Equilibria of Tropical Convection

In an idealized system where:

- precipitation increases with humidity
- efficiency of moist static energy export increases with precipitation

Discharge-recharge cycles are not highly deterministic!

October 1st – December 31st 2011

Northern Sounding Array (NSA) quality controlled version 3B array-averaged variables from CSU

Three consecutive
periods of enhanced
convection, separated
by periods of
suppressed convection

Period 1

Period 2

Period 3

Did significant "discharge" event contribute to transition to persistent shallow convective regime?

 $\langle B \rangle_{\mathsf{DIB}}$ [J Kg $^{-1}$]

 $\langle B
angle_{\mathsf{DIB}}$ [J Kg $^{-1}$]

 $\langle B
angle_{\mathsf{DIB}}$ [J Kg $^{-1}$]

 $\langle B
angle_{\mathsf{DIB}}$ [J Kg $^{-1}$]

Repetitive "discharge" events change OHC surplus to OHC deficit

OHC limits ability to support consecutive/sustained periods of deep convection?

Potential Relevance

Large ocean-

atmosphere

imbalance

OHC has little value for diagnosing precipitation, but...

OHC has value for prognosing precipitation on day-to-day timescales