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Motivation: Trends in AI Weather Prediction
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After 4 years of rapid advancement in 

accuracy, further advancements in AI 
weather modeling have shown diminishing 

returns in improving global metrics.

Experiments with data assimilation and 

ensembles have revealed physical inconsistencies 
and instabilities that require more engagement 

with the data and physics to address.

Model goes unstable

Source: Slivinski et al. 2024



CREDIT: Community Research Earth Digital Intelligence Twin

What is CREDIT?

An open foundational platform for 

developing and deploying AI weather and 

Earth system prediction models.

CREDIT enables users to build custom 

data and modeling pipelines to load data, 

train configurable AI forward models, and 

deploy them for real-time forecasting, 

hindcasting, or scenario projections.

CREDIT offers both scientifically validated 

model configurations and endless 

customization for any use case.
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CREDIT WXFormer v1: Training Data

• ERA5 model level data on 0.28 degree 

grid (1280 x 640 grid cells)
– 1979-2014 training
– 2014-2017 validation
– 2018-2022 testing

• State variables on 16 hybrid-sigma levels 

sampled from the 137 original levels

• Integrated solar irradiance at top of 

atmosphere calculated based on ERA5 

solar constants and pvlib-python SPA 1-

minute solar position calculations



CREDIT WXFormer Model Architecture
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Spectral normalization 

on weights for stability



CREDIT Components
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Global Verification: 6 hour Models

• Both WXFormer and MILES FuXi are 

outperforming IFS for all surface 

variables

• Larger gains with specific humidity 

and surface temperature

• Bigger gains at longer lead times

• Performance consistent with other AI 

NWP models



Kinetic Energy Spectra



Physics Conservation (Work led by Kyle Sha)
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Data: ERA5 conservatively regridded to 1 degree

Loss: Latitude-weighted MSE

Ingredients for Physics Constraints in AI Weather Prediction

1.Sufficient variables to calculate mass, moisture, and energy budgets

2.Conservation layers that adjust data to conserve mass, moisture, and total 

energy across the globe to match initial values with multiplicative scaling



Forecast Improvements
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Physics-Constrained Case Example
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Top of atmosphere net thermal radiation Total Precipitation



CAMulator (Led by Will Chapman)
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CAMulator Variables and Architecture

• Trained on CAM over 30 years with 

SST forcing from observations

• Throughput of 480 Sim. Years/Day
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CAMulator Stability
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CAMulator Teleconnections 
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CAMulator SST Forcing Experiments
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CAMulator SST and CO2 Forcing Experiments
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CREDIT Future Directions

Open Questions

• Ensemble generation: what is the most 
accurate method with least latency?

• Tradeoffs between data volume, model size, 
input data size, and types of physical 
constraints

• Foundation models (e.g. Aurora) vs. more 
specialized models trained on high quality 
datasets

• Data assimilation: traditional methods versus 
DA emulators vs hybrid methods

Next Steps

• Improve usability of CREDIT with software 
engineering support

• Adding ensemble generation

• Regional model training and evaluation

• S2S and longer scale rollout evaluation

• Training a new weather model with more 

vertical levels and hourly timestep at 0.25 
degree resolution

18



Summary

• CREDIT opens a new pathway to 

customization of the whole AI weather 

and climate modeling pipeline

• Physics constraints and spectral 

normalization enable more stable rollouts 

to multi-year time scales

• Extrapolation of climate change signals 

demonstrated, but causality may not be 

correct.

• CREDIT source: 

https://github.com/NCAR/miles-credit

• Links to CREDIT papers: 

https://miles.ucar.edu/projects/credit/
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