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Bulk Formula is a great mean fit to obs across
the world, in all stability states and latitudes
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COARE Bulk Air-Sea Flux Algorithm GitHub
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Bulk Formula don’t fully capture all
small-scale flux dependencies or variability

e Waves and/or currents misaligned with wind (adjustment suggested by Sauvage et al.
2024)... but roughness responds to the shortest waves, which reach equilibrium very fast,
so disequilibrium area/time is very small in obs (lyer et al. 2022a,b, Chang et al. 2025)

* Limited data collected at high-winds (> 30 m/s) ... Davis et al. 2024, Davis in prep, Barr in
prep, Butterworth in prep: what we should expect given the obs we have

* Sea spray (adjustments are possible as indicated by Barr et al. 2023, and in review)
* Subgrid scale spatial gradients (e.g. use caution averaging over the entire Gulf Stream)
* Rain’s impact on cool skin (Witte et al. 2023), + other cool skin details (Fairall, in prep)

*** missing physics, particularly waves/spray become more important at high wind speed /
flux values, which are inherently important (impactful)

*** these are still all second or third order effects to the flux formula

*** if datasets are collected of all training variables, we can adapt COARE to fit it -> like
we’ve done with stress in the context of wave age

*** we don’t update COARE unless a suggested fix offers improvement (better fit) in
describing our global dataset



The time scale, variance, and height of
interest must be taken into account

*Gustiness factor
* Time and height dependent
* Some papers are in preparation on this
* Should adapt as wind speed (PBL dynamics) get more complex

* Flux observations used to train COARE were collected at the surface
(2-17 m), so their formulas cannot be applied to 1-2 km satellite
retrievals with confidence, or above any decoupled internal boundary
layers (but within shallow stable surface layers, COARE works well)



Application of COARE at the finest temporal
and spatial scales (e.g. LES) is FINE

*« COARE transfer coefficients were trained with 10-15 min chunks of 10 Hz data used to compute

eddy covariance flux, that were then hourly averaged, and lumped together across the world to
compute the transfer coefficients (Cd, Ch, Ct) (Fairall et al. 1996, 2003, Edson et al. 2013)

* Shear length scaling suggests Ax of 4 m is about the limit of applicability of bulk flux physics, with
stability dependence: Zippel in prep, Scully et al. 2011, Bariteau and Fairall 2016)

* flux theory should hold at scales much larger than the co-spectral roll-off (kappa*z ~ 4.1 m for 10m winds)

* We haven’t observed un-COARE (un-MOST) like behavior, even at these smallest scales (1 min or a
few meters wide), so long as your data are within the surface layer (< 50 m)

* Simply stated, evaporation doesn’t work fundamentally different at 4 m scale than it does at 1 km
m scale... it’s still a ventilation / gradient process (Evaporation into the Atmosphere, Brutsaert 1982)

* Resolved vs. unresolved turbulence, and comparable vertical/horizontal scales of motion, at fine
LES scales would still need to be addressed or a subject of related research (Juliano et al. 2022)

* Try and find out: It’s difficult or expensive to measure in practice, but you could try with two
stations located close together with fast response time; or systematically add variance to bulk
formula in models and test for significance in model output; account for stochasticity...



Notes from the field: S-MODE

“If COARE was wrong at fine scales, coupled and uncoupled
LES using COARE would produce unrealistic features; it
doesn’t” (Peter Sullivan et al. 2025, & prior work)

-200 -1.50 -1.00 050 020 020 050 100 150 200

“| appreciate the conceptual difficulty with how we
apply boundary conditions for high-resolution
models. It is theoretically an issue, but, as you
note, it can't be an order-one effect -- that is, it
can't be any bigger than the disagreement between
COARE and eddy-covariance fluxes” [which is
relatively well constrained] —Tom Farrar

“MOST wasn’t guaranteed to work at small (LES)
Scalesl bUt it SurpriSingly dOES” - Momme He” 281 FiG. 2. Snapshot of vertical velocity w showing typical ABL turbulence shear-convective rolls (SCR) from

22 simulations with geostrophic winds U, = (10,10,15) ms,”! run names (U10,U10C,U15) shown in a), b), ¢)



The largest 2 sources of flux/surface model
errors when using bulk formula are...

1. Mean biases in near-surface met + ocean state variables
 Air pressure, temp, humidity, wind speed, ocean currents, wave age, SST, SSS, rain rate, solar

downwelling radiation, IR downwelling radiation
* Exchange coefficient variability is small relative to variance in the mean inputs

2. Ocean and atmosphere boundary layer parameterizations
* Including the cloud, entrainment, microphysics, etc. parameterizations that feedback to PBL

* It’s fine to keep improving/researching the bulk formula, and being interested in
small scale physics... but expect further refinements to be minor and special

cases;

* |t’s more important now to address longstanding model mean state biases in
models, reanalyses, and similarly for satellite retrievals (for Tair and qair, Yu 2019)

e stress errors may be larger due to quadratic nature, unlike heat fluxes



Model ensemble mean
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Geophysical Research Letters i

RESEARCH LETTER Lower Trowheric Processes: A Control on the Global
10.1029/2020GL091169 Mean PreCipitation Rate
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mean precipitation rate by 13%

hydrologic cycle

Abstract The spread in global mean precipitation among climate models is explored in two
ensembles using the complementary perspectives of surface evaporation and energy budgets. Models with
higher global mean precipitation have stronger oceanic evaporation, driven by drier near-surface air. The
drier surface conditions occur alongside increases in near-surface temperature and moisture at 925 hPa,
which point to stronger boundary layer mixing. Correlations suggest that the degree of lower tropospheric
mixing explains 18%-49% of the intermodel precipitation variance. To test this hypothesis, the degree of
mixing is indirectly varied in a single-model experiment by adjusting the relative humidity threshold that
controls low-cloud fraction. Indeed, increasing lower tropospheric mixing results in more global mean
precipitation. Energetically, increased precipitation rates are associated with more downwelling longwave
radiation to the surface and weaker sensible heat fluxes. These results highlight how lower-tropospheric
processes must be better constrained to reduce the precipitation discrepancy among climate models.

c/o Frank Bryan



Global buoy network and radiosonde locations show systematic reanalysis biases in
near-surface Ta, ga, sensible/latent heat flux, despite getting wind and SST correct
-> suggests PBL parameterization problems & inconsistent surface energy balance
-> satellite and reanalysis cloudiness and PBL height estimates disagree here
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Jackson et al. in prep;
also confirmed globally with NCAR CESM2: finds systematic latent heat flux bias (Frank Bryan)



Global buoy network and radiosonde locations show systematic reanalysis biases in

near-surface Ta, ga, sensible/latent heat flux
-> suggests PBL parameterization problems & inconsistent surface energy balance
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Wolding et al. in prep

Toward getting the right surface fluxes for the right reasons

e universal relationship found between turbulent and radiative surface fluxes in tropics, a
different relationship is found for subtropics
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Wolding et al. in prep

Toward getting the right surface fluxes for the right reasons

e universal relationship found between turbulent and radiative surface fluxes in tropics, a
different relationship is found for subtropics
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Netcdf PSL Field Campaign Data Archive -> model diagnostics
(also see OOl and ORS buoys, not shown)

e netCDF data on our NOAA PSL “cruises”

site: https://psl.noaa.gov/data/cruises/ &
https://downloads.psl.noaa.gov/psd3/cruises

e PSL Synthesized netCDF Flux Database

search “synthesis” at URLs above
59+ cruises
33 years
20K+ hrs of “good data”
@ 1 hr, 10 min
surface ocean + atmos., fluxes

» Also ERDAPP:

https://marineflux-erddap.coaps.fsu.edu/erddap/index.html
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Bulk Flux Conclusions and Recommendations
from Observational Point of View

* COARE bulk flux formula are well-constrained with observations; many updates have been made since
TOGA-COARE (Fairall et al) 1996, 1997 (v3.0 Fairall et al. 2003, v3.5 Edson et al. 2013, v4.0 soon)

* All stability states; all latitudes; higher and lower winds; small-scale physics
* Check out our github: https://github.com/NOAA-PSL/COARE-algorithm (NOAA+WHOI)
* Gustiness factor can be more sophisticated, scale-aware, height aware (we’re working on it)

* COARE physics holds even at smallest scales (several meters) according to observations, and theory
backs up that experience (just stay near surface, e.g. < 50 m

* More focus should be placed now on improving coupled air-sea boundary layer parameterizations
(and other schemes that impact them) that lead to longstanding biases near-surface model mean
state variables

* How would our models behave if we got the right fluxes for the right reasons? -> obs provide model diagnostics

* Proposed Butterfly satellite mission targeted improved mean state inputs to COARE:
https://nasa-butterfly.github.io

* We need more observations of high-vertical/temporal resolution vertical profiles through atmosphere, above
ocean/flux data from remote sensing

* ... and in using LES and single column models with confidence to bridge scales between process-level
physics/observations and seasonal to subseasonal coupled GCMs or medium-range NWP (Chen et al.
2025, Reichl et al. 2024, Zhu et al. 2025), to guide parameterization improvement
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