


Tropical Pacific Warming Pattern:
A well-known OBS-Model Discrepancy

Observation Model Simulations
1958-2022 SST Trend 1958-2022 SST Trend
Composites of HadISST, ERSSTVS, Composites of 11 Large Ensemble Model
COBE and, and Kaplan simulations with more than 10 members
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Key Questions

1. How does the long-term cooling trend pattern in the
tropical Pacific form in the real world?

2. Why do climate models generally fail to
reproduce the real world?

3. How far are we from reaching a quantitative
understanding of trend pattern formation?



How does the forced climate change pattern in the
tropical Pacific form in the real world?

— Not unexpected.
Wind-driven current and mixing change



Subsurface Cooling Powers the Lack of Surface Warming
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Wind-driven Ekman Pumping Response

Climate Change-related
Ekman Pumping & Transport —_
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15: surface layer friction coefficient (0.5 day™)



Central Equatorial Pacific (CEP): Enhanced Upwelling [1 Cooling

How to understand Eastern Equatorial
Pacific subsurface cooling?



Eastern Equatorial Pacific (EEP): A Regime of Active Mixing

Low stratus over cool SST

: Easterly winds O\/\f\/g

50m

90°W

Upwelling and Mixing (NOAA CVP TEPEX Science Plan)
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Why do climate models generally fail to reproduce the
real world?

— Weak subsurface signal cannot surface.



Pacific Climate Change Pattern in Climate Models

Subsurface cooling remains a prominent feature in model simulations despite distinct SST trend

Observed SST Trend
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Same-signed and Opposite-signed Models
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A Systematic Underestimation of the Subsurface Cooling
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Subsurface Mixing Changes in LE Models and ORAsS

Why subsurface cooling doesn’t just surface in models, especially in
opposite-signed models?

[l For opposite-signed models, the upper ocean stability significantly increase

[l For same-signed models, the wind-driven subsurface cooling is TOO weak.



How far are we from reaching a quantitative understanding of
trend pattern formation?

— Very far, at least when it comes to
the the real world



Surface Layer Budget in Equatorial Pacific
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Challenges in Quantifying Heat Budget

Surface Layer Heat Bud [ (= 1 (°
urface Layer Heat Budget o I dz = Q... —Q,., + _d(Qadv)dZ +Qes

Mixing term is usually NOT resolved & NOT archived.

But we can estimate it, especially in regions with
strong turbulence like the equatorial Pacific.
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Quantifying Vertical Mixing

0 Turbulent heat flux can be parameterized as gradients of large-scale quantities:

oT
T'W = k— K: Eddy diffusivity
0z
z1 :'/: j/; :'/: g
- - (e 0z

aoT oT
(k aZ)ZZ (k aZ)Zl

z2

For the surface layer (-d; d=50 m), vertical diffusion (Q4;7r,) can be inferred:

1/ aT
Qaifru = — 4 KE)

-d
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Quantifying Vertical Mixing

0 Parameterizing eddy diffusivity based on local 0 Inferring eddy diffusivity based on
Richardson number residual term
Assumption:

Residual at the equator in ORASS is dominated by the vertical mixing



Challenges in Interpreting Heat Budget

Surface Layer Heat Budget on Climate Change Timescales

1,0 /oT 100
Ef—d (E) dz = Qnet — Qpen + Ef—d(Q adv)AZ + Qres

0 oT
l f (G_T) dz | Tren (W) P2 — (%) P1  Second Derivative of
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Alternative Approach

aT

~ 0
dtp1

For a period that the climate change signal has not explicitly emerged
(1) We got a heat balance among individual terms

climate change signal

1958 ) 2024

P1 P2
First 20-year Last 20-year

(2) By comparing the change in different terms between these two periods, we got to know what

changes cause the temperature change
aT oT  aT
dtp, Otpy Otp

1 (° 1 (9
= Qnet — Qpenpz — Qnet — Qpenl,,1 + Ef (Q adv)dz - E] (Q adv)dz + Qrest - QresP1
—d P2 —d P1
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Changes in Heat Budget Terms

> Decrease in Q,,.; contribute to the cooling rate while it’s balanced by warming rate due to residual Q,.

(a) Qnet difference between P2 and P1 based on ORASS
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Q...;: difference between P2 and P1 based on ERAS
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A Deus X, ManHDRAGSSodml) HR¥MS Appears

Qad,-ust difference between P2 and P1
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The decrease of Q,4j,s: over time, a deus ex machina, contributes to
the cooling in the equatorial Pacific
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Reduced Need for Adjustment?

0 Hypothesis#1: Reduced need for adjustment term is due to increase in observation data with time
that our ocean model can assimilate

1 9 8 3 Observing platforms By Type, 4-13 Jan 1983 2 0 1 9 Observing platforms By Type, 4-13 Jan 2019
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0 Hypothesis#2: Reduced need for adjustment term is due to compensating error that emerges
when the climate change signal becomes pronounced.

Cold Bias in
Climatology

Faster Warming Rate
Under Climate Change
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Summary

1. How does the long-term cooling trend pattern in the tropical Pacific form in the real world?
¢ Wind-driven and shear-driven current and mixing change.

2. Why do climate models generally fail to reproduce the real world?
¢/ The weak subsurface cooling signal cannot surface.

3. How far are we from reaching a quantitative understanding of trend pattern formation?
v Very far, at least for understanding the real world.

F Jiang, R. Seager, and M. A. Cane. Deus ex machina long-term cooling of the eastern Pacific cold tongue in ocean
reanalysis data. Submitted.

F. Jiang et al. Subsurface cooling and sea surface temperature pattern formation over the equatorial Pacific. JGR Ocean
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Challenges in Quantifying Heat Budget

Surface Layer 1 J'O (aT

Heat Budget aJ-d at) Az = Quet = Qpen + f (Qaav)dz +Qys

0 Challenge#1: Reliable quantification of air-sea fluxes is notoriously difficult,
and its uncertainty is much larger than the climate change signal.

Qret ~1°C/month ORAS5 mean net surface heat flux during 1958-1977
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SST Trend ~1073 °C/month

SST trend in HadISST durlng 1958-2024

e

O.E)O 0.06 0.12
(°C/decade)

27



Exploring A Bit Further for Hypothesis#2

OMIP2 simulation (15 models): 1958-2018, forced with observed wind stress
Upper 50 m Temperature Trend in OMIP2
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Exploring A Bit Further for Hypothesis#2

OMIP2 simulation (15 models): 1958-2018, forced with observed wind stress
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Deus kEx Machina:

God from the
Machine

Deus ex machina is a
storytelling technique
where a character'’s
conflict is solved by the
sudden appearance of a
new character or an
implausible event. This
event, or character,
usually saves the hero
from an otherwise
hopeless situation.

Our Hopeless Situation:

Ocean model cannot cool the
equatorial Pacific on its own
under climate change even in an
assimilating mode



Supplementary Slides
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SST

(@) SSThHadaisst trend
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Q... in ERA5

(@) (Qnet)eras P2-P1 ‘
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Possibility of Changing Parameters in Vertical Mixing Scheme

Richardson Number

(a) Eddy Diffusivity K,
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OMIP2 heat flux

(@) Qpet trend in OMIP2

(b) Q.y trend in OMIP2
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Hypothesis For Initial Response

Mixed Layer

g
Tropical Pacific Ocean South

America
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