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Outline

* Theory and prior results: prediction time limit is set by small scales

. i “the predictability
* ~14 days, known and confirmed repeatedly since Lorenz (1969)  speed of light”

* Testing the limit with new ML models & gradient sensitivity

* Pacific Northwest heatwave of June 2021 (Vonich & Hakim, 2024)

* Large sample confirmation (Vonich & Hakim, 2025: arxiv.org/abs/2504.20238) E '
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Atmospheric Predictability Theory | (Lorenz 1969

* defined by energy spectrum power laws (—3 ~ synoptic scale, —-5/3 ~ mesoscale)
* isotropic; homogeneous; spectrally local triad interactions

Timescale, T, for errors at small scale wavenumber, k, to saturate large scale, &;:
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finite upper bound
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Atmospheric Predictability Limit Estimates
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Similar findings: Zhang et al. (2019); Judt (2020)

Selz et al. (2022) perfect model experiments
* reduce analysis error up to 90%
* limit~17 days; 5 days longer than current IFS

“These results confirm that planetary-scale predictability is
intrinsically limited by rapid error growth due to latent heat
release in clouds through an upscale-interaction process...”

“...the intrinsic limit could be reached in about 40-50 years if
this [recent] rate [of improvement] were to continue"
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Atmospheric Predictability Theory |l (Lorenz 1963)
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New Opportunities from ML Models

* ML models provide a new approach to predictability
* no -5/3 spectrum; strongly damped at small scales (Bonavita 2024)
* different error growth at short leads (Selz & Craig 2023)

* ML forecast skill beyond the limit of physics models suggests that
predictability of the true system is not limited by small scales.

* Gradient facilities to compute derivatives of all aspects (model & state)

* Very computationally efficient (large ensembles)
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Deep Learning Sensitivity Analysis

backpropagation

o BI(()
1+1 ) n 8X(O)

Map large errors (future) to when they are small (analysis error)
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Application: Pacific Northwest Heatwave (2021)

Reanalysed observations —— soohpa geopotential height anomaly (m)

A — S —
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* Top-6 global extremes since 1960 (Thompson et al. 2022)
* Highest Canadian temperature (49.6°C, Lytton, British Columbia) i

e >1400 deaths

« Notin ML training data _

Optimal initial condition evaluation i S A s
* GraphCast 1° model (Lam et al. 2023) Leach et al. (2024)

* Loss: ~weighted mean-squared error
* Derivatives: JAX framework (Bradbury et al. 2018)

 [|nitial conditions and verification: ERA5
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10-day
forecast
from ERAS5
~90% error
reduction
-20 -10 0 To 20
2m Air Temperature Anomalies (°C) Vonich & Hakim (2024)
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10-day
forecast
from ERAS
~20 ~10 0 10 20
2m Air Temperature Anomalies (°C) Vonich & Hakim (2024)
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Generality beyond the Heatwave Case

GraphCast initial-condition optimization daily for 2020
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Optimal Predictability

Loss vs Lead Time
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Optimal Predictability Limit ~35+ days

Loss vs Lead Time

102 | === Controls
= F32 Optimals ——
—— F64 Optimals s

wn

n

(@]

— ~ 68% error
reduction
@ day 20

100 ("
0 5 10 15 20 25 30 35

Lead Time (Days)

21 July 2025 G. J. Hakim, US CLIVAR Summit

40

Float precision matters!
* float32fails ~14 days
» float64 fails ~32 days (out of memory)

Faster error growth for first 3 days
Constant error growth rate ~3-20 days
. doublingt~ 5.8 days

* perfecttwins ~1.0 day

Day 20 skill ~ day 7 for the control



GraphCast Optimals: Time-Mean Structure
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Mmean

0.04ms™ !
0.03ms™ !
0.63m

8 x 104 Pas™!

0.02gkg ™!
0.04K

std

0.39ms™ !
0.28 ms™1!
5.0m

5x 1073 Pas™!

0.08gkg™!
0.33K



MSE Percent Change

Pangu-Weather Forecasts from GC Optimals

Pangu-Weather Z500 MSE Relative to Control
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* Float32 (optimized to 14 days)
* Significant improvements
 Much smallerthan for GraphCast

* Suggests importance of model error



Summary & Outlook

* Gradient sensitivity over long windows yields deterministic predictability limits

 Small corrections to ERA5: ~80—90% reduction in 10-day forecast error
* onthe order of analysis error
* average optimal strengthens the Hadley circulation in ERA5S

* error doubling time ~5-6 days (cf ~1-1.5 days for operational forecasts; ML twins)
 Deterministic predictability limit > 30 days
* Aninterpretation: The optimals are shadowing trajectories

* But drift from ERA5 due to model error; suggests state—model optimization

e Outlook

* reanalysis: seems like a compelling application (optimal analysis & corresponding tuned models)

* forecasting: less clear, but several possibilities
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Thank You!
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