
Exploring the Limit of Atmospheric Predictability with Machine Learning Models

Greg Hakim & Trent Vonich University of Washington

Chris Snyder
National Center for Atmospheric Research

21 July 2025 US CLIVAR Summit

Outline

- Theory and prior results: prediction time limit is set by small scales
 - ~14 days, known and confirmed repeatedly since Lorenz (1969)

"the predictability speed of light"

- Testing the limit with new ML models & gradient sensitivity
- Pacific Northwest heatwave of June 2021 (Vonich & Hakim, 2024)
- Large sample confirmation (Vonich & Hakim, 2025: arxiv.org/abs/2504.20238)

Atmospheric Predictability Theory I (Lorenz 1969)

- defined by energy spectrum power laws $(-3 \sim \text{synoptic scale}, -5/3 \sim \text{mesoscale})$
- isotropic; homogeneous; spectrally local triad interactions

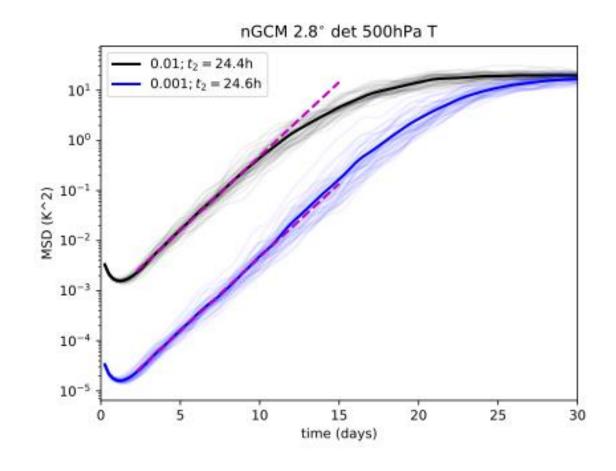
Timescale, T, for errors at small scale wavenumber, k_s , to saturate large scale, k_l :

$$T_{ ext{-}3} \sim ln\left(rac{k_s}{k_l}
ight) \qquad \lim_{k_s o\infty} T_{ ext{-}3} o \infty$$
 $T_{ ext{-}5/3} \sim k_l^{-2/3} - k_s^{-2/3} \quad \lim_{k_s o\infty} T_{ ext{-}5/3} o k_l^{-2/3}$ finite upper bound "speed of light"

Atmospheric Predictability Limit Estimates

Selz et al. (2022) perfect model experiments

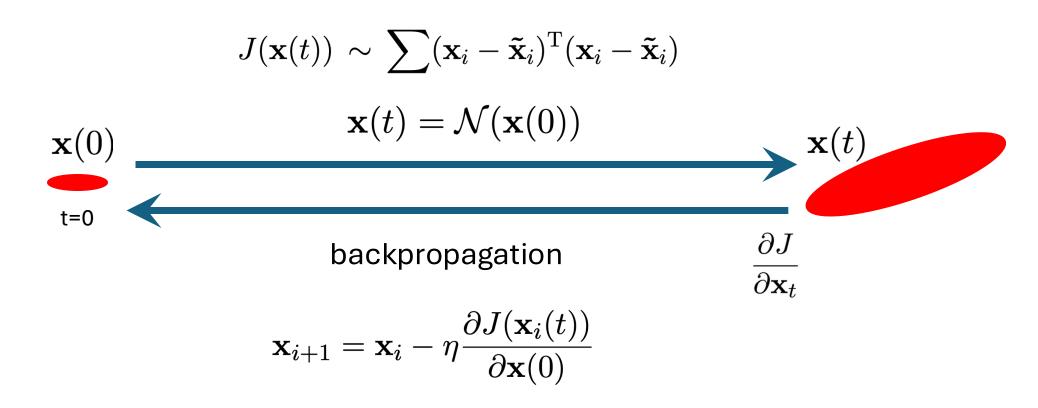
- reduce analysis error up to 90%
- limit ~17 days; 5 days longer than current IFS


"These results confirm that planetary-scale predictability is intrinsically limited by rapid error growth due to latent heat release in clouds through an upscale-interaction process..."

"...the intrinsic limit could be reached in about 40–50 years if this [recent] rate [of improvement] were to continue"

Similar findings: Zhang et al. (2019); Judt (2020)

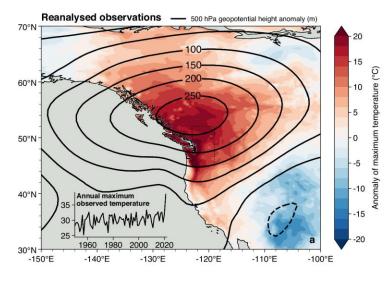
Atmospheric Predictability Theory II (Lorenz 1963)


- tangent linear, $t \to \infty$, stability
- errors grow exponentially at the leading Lyapunov exponent
- "chaos"
- very clear in ML models
 - perfect-twin experiments
 - no initial fast growth

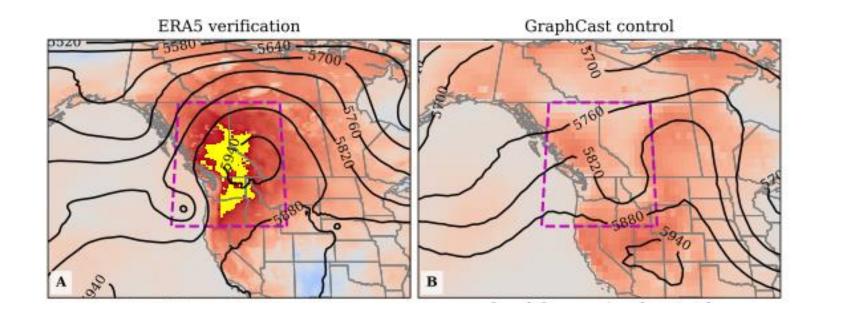
New Opportunities from ML Models

- ML models provide a new approach to predictability
 - no -5/3 spectrum; strongly damped at small scales (Bonavita 2024)
 - different error growth at short leads (Selz & Craig 2023)
- ML forecast skill beyond the limit of physics models suggests that predictability of the true system is not limited by small scales.
- Gradient facilities to compute derivatives of all aspects (model & state)
- Very computationally efficient (large ensembles)

Deep Learning Sensitivity Analysis

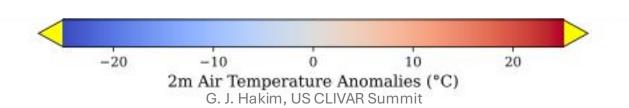

Map large errors (future) to when they are small (analysis error)

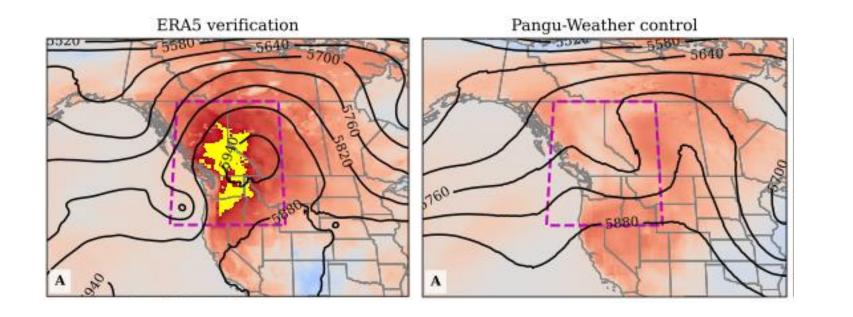
Application: Pacific Northwest Heatwave (2021)

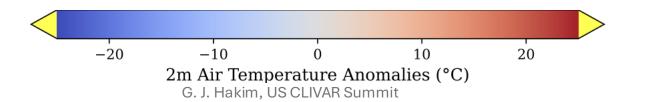

- Top-6 global extremes since 1960 (Thompson et al. 2022)
- Highest Canadian temperature (49.6°C, Lytton, British Columbia)
- >1400 deaths
- Not in ML training data

Optimal initial condition evaluation

- GraphCast 1° model (Lam et al. 2023)
- Loss: ~weighted mean-squared error
- Derivatives: JAX framework (Bradbury et al. 2018)
- Initial conditions and verification: ERA5




Leach et al. (2024)

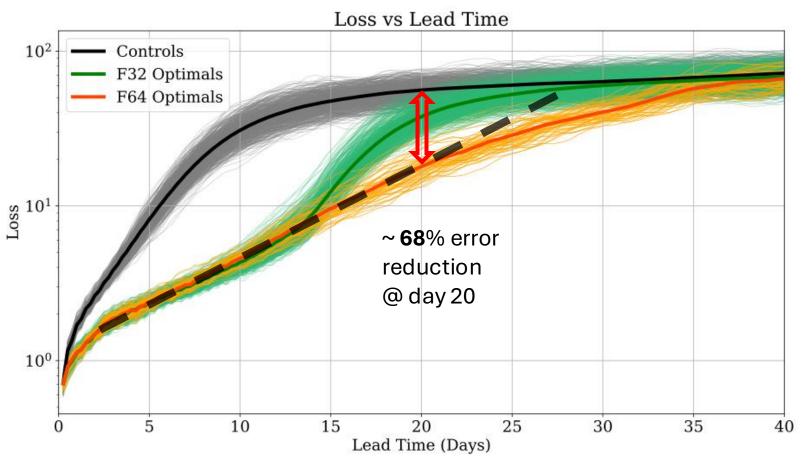

10-day forecast from ERA5

~90% error reduction

Generality beyond the Heatwave Case

GraphCast initial-condition optimization daily for 2020

Optimal Predictability



Every case has large improvement

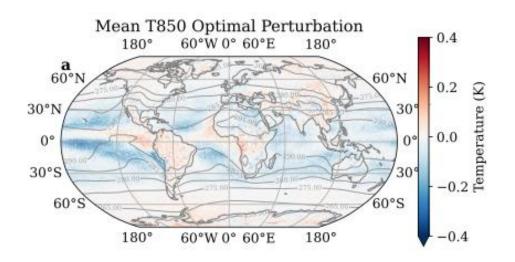
Errors grow like the control after optimization stops

float-32 precision limit

Optimal Predictability Limit ~35+ days

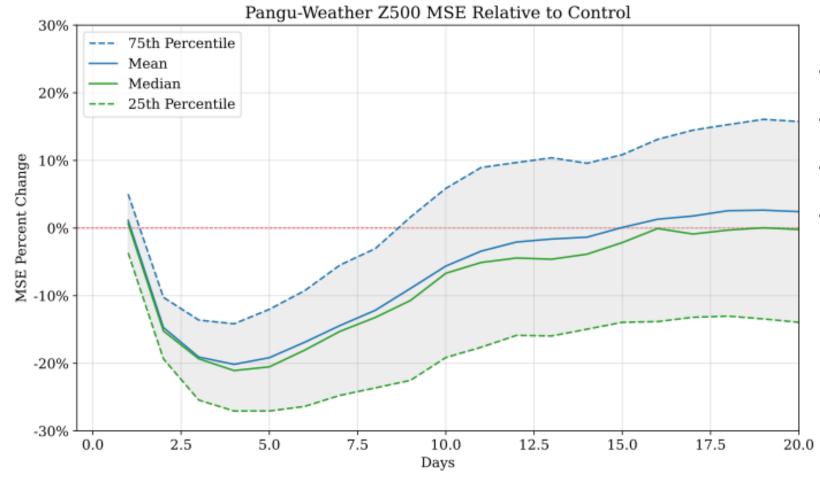
Float precision matters!

- float32 fails ~14 days
- float64 fails ~32 days (out of memory)


Faster error growth for first 3 days

Constant error growth rate ~3-20 days

- doubling t ~ 5.8 days
- perfect twins ~1.0 day


Day 20 skill ~ day 7 for the control

GraphCast Optimals: Time-Mean Structure

	mean	std
200 hPa Zonal Wind	$0.04{\rm ms^{-1}}$	$0.39{\rm ms^{-1}}$
200 hPa Meridional Wind	$0.03{\rm ms^{-1}}$	$0.28{\rm ms^{-1}}$
500 hPa Geopotential Height	$0.63\mathrm{m}$	$5.0\mathrm{m}$
500 hPa Pressure Vertical Velocity	$8 \times 10^{-4} \mathrm{Pa} \mathrm{s}^{-1}$	$5 \times 10^{-3} \mathrm{Pa} \mathrm{s}^{-1}$
700 hPa Specific Humidity	$0.02{ m gkg^{-1}}$	$0.08{ m gkg^{-1}}$
850 hPa Temperature	$0.04\mathrm{K}$	$0.33\mathrm{K}$

Pangu-Weather Forecasts from GC Optimals

- Float32 (optimized to 14 days)
- Significant improvements
- Much smaller than for GraphCast
- Suggests importance of model error

Summary & Outlook

- Gradient sensitivity over long windows yields deterministic predictability limits
- Small corrections to ERA5: ~80—90% reduction in 10-day forecast error
 - on the order of analysis error
 - average optimal strengthens the Hadley circulation in ERA5
 - error doubling time ~5-6 days (cf ~1-1.5 days for operational forecasts; ML twins)
- Deterministic predictability limit > 30 days
- An interpretation: The optimals are shadowing trajectories
 - But drift from ERA5 due to model error; suggests state—model optimization
- Outlook
 - reanalysis: seems like a compelling application (optimal analysis & corresponding tuned models)
 - forecasting: less clear, but several possibilities

Thank You!