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Overview

« Background (~historical) (Small)
— Focus on turbulent heat fluxes (sensible and latent)
— What drives the turbulent fluxes?
— Large and small scale
— What drives the SST?
— Large and small-scale
— Timescales
« Bulk fluxes and sub-grid scale variability (Grooms)
— Parameterization ideas
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A viewpoint from 1992...

Variability of Latent and Sensible Heat Fluxes

Estimated Using Bulk Formulae Fraction of LHFLX variance due to Aq anomalies
= “I: a0
Daniel R. Cayan X ‘:'-';P- GIH e ]

Climate Research Division
Scripps Institution of Oceanography, 0224
La Jolla, CA 92093-0224
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a Bulk Formulation of Latent and Sensible Fluxes Fraction of LHFLX variance due to wind anomalies
A form of the “sampling method” (Hanawa and Toba, 1987), employing the 80

monthly average of the products of simultaneous observations (wAg and wAT),
is used to calculate the fluxes. (The COADS set does not provide the full heat
flux formulation, but does furnish the {wAg} or {wAT} products averaged over
simultaneous pairs of individual observations for each month.) The approximate
form of the equations used here is
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Fy = pLCp{wAq} 3)
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Fig. 7 Fraction (%) of F; variance, ofp'. contributed by W2Aq'? (above) and by Ag w'? (below);

computed from December, January and February 19501986 data. Shading indicates regions
with 40% of variance explained.

Fy = pCpoCu{wAT} 4)

Based on marine surface observations — COADS , Since our primary interest concerns air-sea inter-

action over several hundred kilometer scales, each of
Woodruff et al. 1987. Monthly data. the COADS 2° data fields was averaged onto a 5° lat-
itude-longitude grid, centered on 5° latitude-longitude
intersections. The data density and the spatial averaging
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A viewpoint from 1992...

Latent and Sensible Heat Flux Anomalies over the Northern Oceans:
Driving the Sea Surface Temperature

DANIEL R. CAYAN
Climate Research Division, Scripps Institution of Oceanography, La Jolla, California
(Manuscript received 27 December 1990, in final form 25 October 1991)

The bulk formulas for latent (/;) and sensible (F,)
sea-air heat fluxes are ‘

sSST" Fi = pLCew(gqs — da) (1) .
= —F'/phC,. Fy = pC,Cyw(SST — T,), (2) :

ot where w, g,, and T, are the scalar wind (wind speed), Foch
specific humidity, and temperature of the air in the [ 3
LFw

boundary layer at a given height (observation level) % }/
_

\ ¥

' ', model r'= 066
L accts for 9% of ASST/At

Correlation coefficient between SST tendency and
turbulent heat fluxes

"~ accts for 8% of flux

L

FIG. 4. Spatial patterns for the leading three North Pacific canonical correlation modes: g maps
(solid lines), representing £}, patterns, vs h maps (shaded), representing ASST '/ At patterns.
Contours and shading show telative amplitude of the g and # maps, based on winter months of
1950-86. Positive/negative values of g maps are indicated by +/ — signs; positive/negative values
of 4 maps are indicated by stippling/hatching.

PNA pattern
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FIG. 2. Correlation coefficients (X100), mapped for global ocean Fi,, vs ASST "/ At at each grid point, for winters 1946-86. Contours at
0, £0.3, +0.5, £0.7. Light and heavy shading indicates correlations < 0.3 and <0.5. Hatching and stippling denote negative and positive

reren . . Since our primary interest concerns air-sea inter-
Based on marine surface observations — COADS , action over several hundred kilometer scales, each of

Woodruff et al. 1987. Monthly data.

the COADS 2° data fields was averaged onto a 5° lat-
itude-longitude grid, centered on 5° latitude-longitude
intersections. The data density and the spatial averaging
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A viewpoint from 1997...

NOVEMBER 1997

Surface Flux Variability over the North Pacific and North Atlantic Oceans

MICHAEL A. ALEXANDER AND JAMES D. SCcOTT
CIRES, University of Colorado, Boulder, Colorado
(Manuscript received 22 January 1996, m final form 9 May 1997)
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Regression: LHFLX due to wind anomalies
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F16. 11. Local regression values of pcyc, times (a) TAT' and (b)
U'AT on Q). The unitless values represent the fraction of QJ, related
to the thermal and wind speed anomalies at that grid point. Contour
mterval 1s 0.1 and values between 0.5-0.6 are shaded light, while
those greater than 0.6 are shaded dark.

Here we examine a 17-yr simulation performed with
the Geophysical Fluid Dynamics Lab (GFDL) GCM,
described in section 2. to examine the temporal and
spatial variability of surface fluxes over the North Pa-

F1G. 12. Local regression values of pc,L times (a) UAg" and (b)
U"Aq on O}, The unitless values represent the fraction of Qj, related
to (a) moisture and (b) wind speed anomalies at that grid point.
Contour interval and shading as in Fig. 11.

with storms. The SST and sea ice boundary conditions
in the model simulation repeat the same seasonal cvcle
each year, thus we can isolate the surface flux variability,
which is independent from oceanic fluctuations. In sec-




A viewpoint from 2003...

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. C10, 3304, doi:10.1029/2002JC001750, 2003
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We focus on the first three terms of the l'ighl-hilﬂd side of Figure 6. Same as in Figure 5, but for the (a, b) total upward latent heat flux anomalies, (¢, d) SSTA
equalions (6) and (7) in the following amilysis since the last contribution, (e, f') SATA contribution, and (g, h) scalar wind speed contribution to Figures 6a and 6b,

two terms have indeed been found negligible. The first three lrgg)flglli,vfslyirgl];ii;ugslr;;213}11333“1 rectanele fn Flgures a0 indicaes the domain [35 ~ 437, 140~
terms of equation (7) are considered to represent the

respective contributions from SSTA, SATA, and U,, in this To represent the warm and cold phases of this wintertime
decadal variability in the SAFZ, we selected a pair of 4-year
periods; 1968/1969-1971/1972 winters (category DC+) and
1982/1983—-1985/1986 winters (category DC—), based on
Figure 3a of Nakamura et al. [1997a]. In Figure 4b, for the
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A viewpoint from 2012...

Impact of ocean model resolution on CCSM climate simulations

Ben P. Kirtman - Cecilia Bitz - Frank Bryan - William Collins - John Dennis -
Nathan Hearn - James L. Kinter III - Richard Loft - Clement Rousset -
Leo Siqueira - Cristiana Stan - Robert Tomas - Mariana Vertenstein
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Could this be model bias?

Bishop et al. (2017) and Small et al. (2019) showed similarresults to CESM-HR
from OAFLUX and J-OFURO3. Malcolm Roberts et al. 2016 found similar for HadGem.
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A viewpoint from 2017...
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Scale Dependence of Midlatitude Air-Sea Interaction

STUART P. BISHOP

North Carolina State University, Raleigh, North Carolina

R. JUSTIN SMALL, FRANK O. BRYAN, AND ROBERT A. TOMAS

National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 9 March 2017, in final form 30 June 2017)

D
b Method for determining the transition length scale L. Solid curves are best fit

at monthly time scales as a function of

space scale o, at the WBC locations in Fig. 10. Open circles are the raw data, and
larger colored circles are the intersection locations

Updated in Small et al.
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Climate and Frontal Air-Sea Interaction

A viewpoint from 2019...

Air-Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses:
What Drives Their Variability?#

R. JUSTIN SMALL AND FRANK O. BRYAN

National Center for Atmospheric Research, Boulder, Colorado

STUART P. BISHOP

North Carolina State University, Raleigh, North Carolina

ROBERT A. TOMAS

National Center for Atmospheric Research, Boulder, Colorado
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F1G. 11. Linear regression of individual terms of LHF decomposition onto full LHF variability, based on CESM-HR, from method 2:
(a) g5 (SST) contribution, (b) wind contribution, (¢) air humidity contribution, and (d) contribution of all three terms. The displayed

quantity is unitless.




Air-Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses:
What Drives Their Variability??

Correlations between SST and turbulent heat flux

Sensitivity to spatial scale
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Special Section:

A viewpoint from 2022...

Role of Ocean and Atmosphere Variability in Scale-Dependent

Thermodynamic Air-Sea Interactions

Lucas C. Laurindo'? (2}, R. Justin Small'? (2, LuAnne Thompson? (), Leo Siqueira* (),

Community Earth System Frank O. Bryan? (), Ping Chang'*# (), Gokhan Danabasoglu'? 2, Igor V. Kamenkovich* (),
(l\lcl%gl‘l\‘lHPllgg;RSeSOI'u tll%[‘l et Ben P. Kirtman* ), Hong Wang!’# (), and Shaoqing Zhang'7#
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Figure 6. Stochastic model estimates of the coherence (yfa ) and absolute phase factor ( |9}a|) between sea surface temperature (SST) and turbulent heat flux (THF)
as a function of zonal wavenumber (k) for high-resolution (HR). The top row (a—b) exemplifies the ocean and atmosphere-driven components of the stochastic model
solutions (ocean-driven [OCN] and atmosphere-driven [ATM], blue and red lines, respectively), their sum (ATM + OCN, black), and the reference estimates from the
HR simulations (thick gray line). The middle (c—e) and bottom (f-h) rows are latitudinal spectrograms of the ATM + OCN, OCN, and ATM components of 713'0 and
|67 |, respectively. The left and right dashed lines in (c-h) represent the zonally-averaged first internal Rossby radius of deformation for the atmosphere and the ocean,
respectively, the thin dashed line is the spatial Nyquist frequency for the spectral analysis, and the black horizontal line marks the 40°S latitude used to plot the results

in (a-b).

Figure 4. Coherence (y.}.Q ) and absolute phase factor (9,0) between sea surface temperature (SST) and turbulent heat flux (THF) in zonal wavenumber domain for

the Pacific Ocean resolved by high-resolution (HR), low-resolution (LR), and satellite observations (OBS). The top row (a-b) exemplify estimates for 40°S while the
middle (c—e) and bottom (f-h) rows show latitudinal spectrograms. The left and right thick dashed lines in (c-h) represent the zonally-averaged first internal Rossby
radius of deformation for the atmosphere and the ocean, respectively; the thin black dashed denotes the spatial Nyquist frequency for the spectral analysis; and the black
horizontal line marks the 40°S latitude that the estimates in panels (a-b) refer to.
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A viewpoint from 2024...

MARCH 2024 CONEJERO ET AL. 823

Near-Surface Atmospheric Response to Meso- and Submesoscale Current and
Thermal Feedbacks

CARLOS CONEJERO,* LIONEL RENAULT,* FABIEN DESBIOLLES,>® J. C. MCWILLIAMS,® AND HERVE GIORDANI®

* Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France
b Department of Earth and Environmental Sciences, Universiti di Milano—Biocca, Milan, Ttaly
€ CIMA Research Foundation, Savona, Italy
4 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
¢ Météo-France, Toulouse, France

a) Mesoscale b) Submesoscale
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F1G. 10. Coupling coefficient between the surface turbulent heat flux and SST anomalies sy, (see section 2): (a) spa-
tial distribution of mesoscale sy, (b) spatial distribution of submesoscale sy, and (c) binned scatterplot of the surface




Some thoughts

« Biases in the state variables are still important for climate models and reanalysis (e.g.
recent findings by Frank Bryan, Elizabeth Thompson)

« Requirements for observations, e.g. Cronin et al. 2019 suggestions, saildrones,...

 Now we are moving to even smaller scales - limitation of bulk flux assumptions,
model grid size
— How to treat sub-grid scale variability (following slides)
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Proposed parameterization strategy, NOAA 2022

Consider the air-sea momentum flux averaged over a coarse grid
cell
T=1(T,T,U,Us..)=1T,+ T, T, + T., U, + U,, U, + U, ...)
In a coarse model we don’t know the subgrid perturbations, so
we instead use

T~ 1(Ty, T, Uy, U, -..)
We proposed improve this by generating N synthetic, stochastic
samples from a joint subgrid-scale distribution and then averaging
them:

N
1 _ . _
Nz (Ta+ T T+ T, T + U0, T+ U, )
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Proposed parameterization strategy, NOAA 2022

An easily-implementable preliminary approach motivated by
Brankart (Ocean Modelling, 2013) is to simulate N random walks
around each grid cell, sampling the local atmospheric and
oceanic spatial variability.

A more accurate approach would be to use a combination of
physical insight and high-resolution coupled data to learn the joint
distribution of SGS variables as a function of large-scale input
variables — a physics-informed generative-modeling ML approach
— and sample from that. Both approaches could be used in
combination with improved bulk formulae.

meens
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ok Ocean Modelling
ELSEVIER Volume 66, June 2013, Pages 64-76

Impact of uncertainties in the horizontal
density gradient upon low resolution global
ocean modelling

Jean-Michel Brankart &
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