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Absolute extremes Relative extremes

A temperature over a threshold (e.g. 95 degrees F) A temperature over a percentile (e.g. 95th percentile)

Other considerations are often shared, for example definitions for length, compound extremes

Impact motivated (health, biosphere, infrastructure…) Generally (but not always) impact agnostic

Strong spatial structure due to climatology: some places may 
have extremes all the time, some may never have them Probability is spatially-uniform by design

Strong seasonality Seasonality often removed through choosing a day-of-year 
varying percentile

Baseline is irrelevant Affected by choice of baseline

Should the threshold change with climate change? Should the baseline change with climate change?

Extremes: a definitional challenge



What factors should be taken into consideration when identifying an 
extreme in a changing climate?

The baseline matters — and its choice depends 
on why we care about a particular extreme



Impacts-motivated extremes: the choice of threshold depends on the 
impact, and may or may not be changing with time (is there adaptation?)

Lüthi et al., 2023, Nature Communications



Percentile-based extremes: fixed baselines can cause challenges in a 
rapidly warming climate

Extreme high 
temperatures

Extreme low 
temperatures



A proposal for baselines: A hierarchy of controls on the change in 
extremes, as measured by a percentile

Global mean temperature 
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A proposal for baselines: A hierarchy of controls on the change in 
extremes, as measured by a percentile



Made-up 
climate change 

signal: +2 C∘

“simple shift” mode



How can we integrate different techniques (dynamical, empirical) to 
better inform the evolving risk of extremes over time?

The challenge: extremes are by definition rare — in some cases, very rare! 

Two interrelated questions: 

1. What is the probability of a given extreme in a “baseline” climate? 

2. (How) is that probability changing with climate change?



One important (philosophical) tool: large ensembles

Figure by Kyle McEvoy 
(*Assumes 251  
years of data)

Example: what is the difference between the largest monthly-average precipitation over 
50 ensemble members compared to what we might observe in one record?



One important (philosophical) tool: large ensembles

Figure by Kyle McEvoy 
(*Assumes 251  
years of data)

Or… how much more extreme could a precipitation event be than what we’ve seen?



Many extremes share characteristics:  
Can we share across time and space?

Duan, McKinnon, Simpson, in review, 
Earth’s Future

The 2021 Pacific Northwest heat wave 
was a ~4  event: rare in one location, but 
much less rare across many locations.

σ



Many extremes share characteristics:  
Can we share across time and space?

Duan, McKinnon, Simpson, in review, 
Earth’s Future

In CESM2, we identified “analog” 
midlatitude locations (black) that shared 
the same climatological skewness and 
kurtosis, many of which had major (> 4 ) 
heat waves in a historical simulation. 

σ

McKinnon and Simpson, 2022, GRL



Learning from analogs, extrapolating from other events, and using 
climate models all require understanding mechanisms

Fischer et al., 2021, Nature Climate Change

Are the physics of the most 
extreme events just an 
extrapolation of more 
typical events? 



What are the implications of different techniques for 
identifying extremes over time?



What are the implications of different techniques for 
identifying extremes over time?

Many metrics of changes in extremes are a strong 
function of the mean state.  

Three examples. 

In all cases, the true climate change signal is a uniform 
warming across summertime temperatures.



estimated and simulated frequencies reveals the impor-
tance of these individual contributions [(i), (ii), or (iii)].
Assuming a uniform shift of the temperature distri-

bution, models with a narrow temperature distribution
(low variability; Fig. 5b) show a larger increase in fre-
quencies for a given warming than models with wide
temperature distributions (high variability; Fig. 5a)
(Sillmann et al. 2014). To quantify the uncertainty con-
tribution due to the representation of the present-day
distribution [(i)], we shift the local daily temperature
distribution of each model by the corresponding local
multimodel mean warming consistent with 38C global
warming (see section 2b for details). The model dis-
agreement in frequencies estimated from a multimodel
mean shift is then entirely due to the differences in the
model representation of the present-day distribution, as
the shift is identical across models. In the Northern
Hemisphere, we find a strong relationship between
model-simulated frequencies and frequencies estimated
from the multimodel mean shift (Fig. 6a). This implies
that an accurate representation of the present-day
temperature distribution is important. For the North-
ernHemisphere,more thanhalf of themodel disagreement

(an explained variance of 0.6) in projected frequencies can
be explained by the model’s representation of the present-
day temperature distribution.
However, for a given level of global mean warming of,

for example, 38C, models simulate different magnitudes
of local warming for any given grid point. Assuming a
simple shift of the present-day temperature distribu-
tions, this disagreement in local warming contributes to
the uncertainties in simulated frequencies. To estimate
this contribution [(ii)], we repeat the abovementioned
analysis but shift the distribution at each grid point with
each model’s individual local warming rather than the
multimodel mean warming. The difference between
uncertainties in frequencies of hot extremes estimated
from shifting with multimodel mean local warming and
each model’s individually simulated local mean warm-
ing is used as a quantification of the uncertainty contri-
bution caused by model uncertainty in the local mean
warming [(ii)]. This contribution explains an additional
30% of the disagreement in frequencies of hot extremes
over the Northern Hemisphere (Fig. 6b). The remaining
disagreement acrossmodels, which cannot be explained by
(i) or (ii), can be attributed to the uncertain changes of

FIG. 5. A schematic diagram illustrating changes in frequency from a uniform shift of (a) wide
and (b) narrow distributions.
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The change of the number of days beyond a threshold depends on the 
width of the distribution: greater increases for narrow distributions

Borodina et al (2017) JClim 



procedure. To see this, note that the shift examined in sections 2a and 2b is equivalent to using the CDF of the
shift variable s= (Tt! T)/σ. If the empirical CDF emerges from the envelope sampled from the reference
Gaussian, the two differ at the specified level. Importantly, for this application, it is apparent when the
differences in the slope that lead to this separation result from differences in PDF near Tt, the neighborhood
of interest in the warm-side tail (as opposed to differences from Gaussian arising in the cold-side tail).
Third, this leads to an index of non-Gaussianity from which maps can be plotted. Choosing the separation
between these CDFs at a specific shift value, here s= σ, and comparing to the distribution sampled from
the reference Gaussian creates a statistic that has a physical interpretation (increase in the fraction of days
exceeding the threshold for the given shift relative to that of the Gaussian) and also has a direct relationship
to a significance level.

4. Domain-Wide Exceedances

Expanding on the examples in section 3, Figures 3a and 4a show maps of the threshold exceedances for all
grid cells when a uniform 1σ warming is applied to the PDF as in the above examples (similar patterns occur
with a 0.5σ shift; see Figure S5). The map of σ is shown on the right of each figure for reference. Unshaded

Figure 2. Same as in Figure 1 except for JJA and different locations.
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The change of the number of days beyond a threshold depends on the 
symmetry of the distribution: greater increases for short upper tails

Loikith and Neelin (2015) GRL

actual distribution 
normal distribution



The change in the probability of an event depends non-linearly on the 
threshold and the underlying distribution

Climate change 
signal: +2 C∘

Climate change 
signal: +2 C∘



In our papers, should we… 

measure changes in extremes as the 
change in temperature for a given 

percentile (max = 100th percentile)? 

…or… 

provide metrics such as heat wave 
days? 

Who is our audience? 



Thank you!

karenamckinnonkmckinnon@ucla.edu

Heat extremes in a warming world 
Karen McKinnon, Dept. of Statistics and Institute of the Environment, UCLA 

email: kmckinnon@ucla.edu Kavli Frontiers of Science, US Symposium

Motivation and background
The greatest impacts of climate change are 
associated with extreme events. Heat waves are the 
most deadly weather event in the developed world, 
and can cause substantial economic losses related 
to crop mortality, wildfire, and reductions in labor 
productivity, among other impacts. It is thus critical 
to understand how — and why — continental heat 
waves are changing with warming global 
temperatures.

Historical trends in summertime temperatures are 
largely consistent with a basic shift in the distribution

The impacts of heat are mediated 
by humidity — and humidity is 
changing in an unexpected way
Temperature and humidity are interrelated due to 
both atmospheric and land surface physics. 
Further, the impact of heat is affected by humidity. 

Current research questions
1. What processes control the statistical 

characteristics of temperature, and their 
(potential) changes? 

2. Where and how do land-atmosphere 
interactions amplify heat waves? 

3. What is causing the observed decrease in 
humidity in dry regions?  

4. How does the biosphere and wildfire risk 
respond to humidity changes? 
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A framework: shifting distributions

Figure 1: Schematics from the Intergovernmental Panel on 
Climate Change showing different types of possible 
distributional changes, and their impact on extreme events.

Method: Quantile regression + 
Legendre polynomials 
Daily temperatures do not follow a Gaussian 
distribution, so their changes cannot be summarized 
by a change in mean and variance alone. Instead, 
we estimate trends in the 5th-95th quantiles (in steps 
of 5%) using quantile regression, and summarize the 
behavior by projecting onto the first four Legendre 
polynomials. Intriguingly, these polynomials emerge 
as a natural (variance maximizing) basis for the 
quantile trends, and also closely map to changes in 
mean, variance, skewness, and kurtosis. 

Figure 2: The first four Legendre polynomials shown in the 
space of percentiles (spanning zero to one).
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Figure 3: Historical trends in the distribution of summertime daily temperatures at 
weather stations, as summarized by four orthogonal bases: shift, stretch, skew, and 
tails, which roughly correspond to positive increases in the mean, variance, skewness, 
and kurtosis. The variance explained by each basis is shown at the lower right. 

Understanding very extreme events: the 2021 Pacific 
Northwest heatwave
At the end of June 2021, temperatures in the Pacific Northwest shattered 
records, in some cases exceeding prior records by 5-6 C. Does the 
occurrence of events like this suggest that we are seeing more than the 
“simple shift” of temperatures?  
In a word: no. While the event was highly unlikely (roughly 1 in 10,000 years), 
its occurrence is consistent with the underlying statistical characteristics of 
temperature in the region, and comparable events are simulated by climate 
models even without substantial warming. 

∘

Figure 4: (top) An example of a very extreme event from a climate model. (bottom) The 
maximum temperature simulated in the climate model CESM2 across 8500 years of 
data, as well as the temperatures observed in the 2021 Pacific Northwest heatwave, 
closely follow their underlying skewness and kurtosis.
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Figure 5: Example of a possible change in the joint 
temperature-humidity distribution.

Figure 6: Trends in humidity on hot days. Humidity is 
decreasing in dry regions around the world, which 
increases wildfire risk and is contrary to expectations from 
theory and climate models.
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