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* How much does surface evaporation contribute to AR moisture?

* What are the impacts of local and remote SST on landfalling AR
moisture and precipitation?

* What are the impacts of ARs in coastal regions and open oceans?

* Are the impacts different between coastal and open oceans and
among different ocean basins?

* How important are air-sea interactions on AR predictions?

-

* What are the impacts of remote air-sea interactions on ARs
through their impacts on various modes of variability?
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What are the sources of moisture feeding the ARs for their enhanced IVT and IWV?

Moisture budget based on 200 most intense extratropical cyclones in North Atlantic
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What are the sources of moisture feeding the ARs for their enhanced IVT and IWV?

The narrow filament of IWV represents the footprints left behind as the cyclone channels
atmospheric moisture into a narrow band as it travels poleward — water vapor is
exported from the cyclone rather than transported over long distance from the tropics

... instead of poleward transport occurring
because of a direct and continuous feed of
moist air from the subtropics to the
extratropics (as suggested by the term
“atmospheric river”), poleward transport is
the result of a continuous cycling of
moisture within the cyclone itself. Local
convergence of moisture, occurring ahead of
the cold front, provides a source of moisture
at the base of the warm conveyor belt
airflow, which ascends in a slantwise
motion, reaches saturation, and forms
precipitation.

Such analysis has not been done for ARs in the North Pacific! (Dacre et al. 2015 BAMS)
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What can we learn from two regional climate simulations (6 km resolution) in
which the SST in one simulation is on average warmer than that of the other?

SST (K)

280 284 288 291 295

(Chen and Leung, 2020 GRL)
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Evaporation from local ocean
contributes 6.5% and 21.0% to the total
moisture of AR and non-AR storms

AR and non-AR precipitation increases
by 3%/K and 10%/K of local SST
warming

AR and non-AR IWV increases by 1.2%/K
and 2.5%/K of local SST warming

Precipitation response to SST is 3-4
times that of the IWV

Local SST warming amplifies
precipitation response by destabilizing
storms
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precipitation in North America

Mesoscale eddies increase landfalling ARs by 40% and extreme precipitation by up to 30%

Comparison of two
simulations with
prescribed SST with and
without filtering of
mesoscale features:

* Asymmetric impact of
mesoscale warm and cold
anomalies on PBL
moisture

e Larger fractional impact
on AR moisture after 3-4
days of AR evolution
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Strong winds associated with ARs induce ARs induce SST cooling most prominently within the cold
sea level changes near the coast sector of the cyclones by increasing evaporation where
@ O e 16 201 & o e & aore air-sea moisture gradient is strongest
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Larger improvements in SST forecast for ARs that produce stronger SST cooling
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Larger improvements in AR IWV and IVT forecast for ARs that produce stronger SST cooling
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* Extreme precipitation features and their large-scale environments (PI: David
Neelin)

* Provide a standardized framework that enables the combination of phenomenon-
based diagnostics and spatial-temporal and process-oriented diagnostics

* Analyze the spatio-temporal characteristics of precipitation in different phenomena,
and the contributions of the respective phenomenon to overall precipitation
statistics,

* Create process-oriented diagnostics for the linkages of the phenomena to their large-
scale environment.

* Investigating the effects of co-occurring weather phenomena on extreme
precipitation (PIl: Travis O’Brien)
 How do the meteorological characteristics of weather phenomena vary when they
are or are not associated with another weather phenomenon?

- * Does the co-occurrence of phenomena alter the statistical characteristics of

precipitation?
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Tracking of multiple features and their co-occurrence
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GPM preciptiation + 4 categorized features:
AR (blue), MCS (green), LPS (purple), Front_c (blue): Front_w (red), Front_s (green)
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e Storm-resolving simulations performed using WRF for 1981-2010 and 2041-2070
using pseudo-global warming (PGW) over the western US at 6 km grid spacing

 |dentified a total of 8843 daily storm events in 1981-2010

Iavg — Ptot/Atot
Prot = Atot X1t XSC
SC = Iopg! It

SC <1 if Igpy <l
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storm metrics from observations

Larger increases in peak intensity than mean intensity,

particularly for storms with higher precipitation percentiles
(typically AR storms)
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\%/ Sharpening of cold season storms in the western US
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increasing precipitation volume (slow rising flood) and increasing peak intensity
(flash flood).
o Accounting for climate change, grid scale precipitation analysis overestimates flood
risk by ignoring storm sharpening or decreasing area reduction factor (spatial

concentration).
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Warming to make California downpours even wetter, study says

By SETH BORENSTEIN  January 19,

Chen, X,, Leung, L. R., Gao, Y., Liu, Y. & Wigmosta, M. “Sharpening of cold-season storms over the western
United States,” Nature Climate Change 13, 167-173 (2023). [DOI: 10.1038/s41558-022-01578-0]
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Modernizing Probable Maximum Precipitation Estimation shaRe f ¥ in =

The committee is charged with establishing a common understanding of PMP; reviewing and assessing
existing approaches to PMP estimation and for incorporating the impacts of climate change on those
estimates; assessing PMP data needs and sources; and recommending a preferred approach for PMP
estimation that incorporates the impacts of climate change and the characterization of uncertainty.
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. How much evaporation and local moisture convergence contribute to
the moisture supply for AR precipitation? How might that be different
between landfalling ARs in different regions?

. What control the spatial/temporal variability of air-sea fluxes under ARs?
How well can models simulate such variability?

. What are the impacts of ARs on coastal and open oceans? What are
potential implications for subsequent storms?

. How often do ARs co-occur with other weather features? What can we
learn from such co-occurrence of ARs?

. What processes control AR heavy precipitation? How might the
processes change with warming? What scaling factor should be used
(CC, super-CC, or a theoretical maximum exists)?




