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Motivation: Why AI in DA?

In DA, we attempt to solve the following problem:

(x − xb)
T B−1 (x − xb)︸ ︷︷ ︸

Jb: background

+

N∑
k=0

(yk − Hk (x))T R−1
k (yk − Hk (x))︸ ︷︷ ︸

Jo: Observation

DA already integrates physics and data, so why not AI too?
AI 6= replacement, but rather a tool to enhance DA
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The Hanging Fruits

1. Accurate Background Covariance
2. Enhanced Observation Handling
3. Improved Efficiency
4. Better Algorithms
5. Coupled DA
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1. Accurate Background Covariance ..🥭

AI for flow-dependent, adaptive, realistic background error models

Bias correction: Use ML to learn systematic model errors over time
I NN to track and remove seasonal biases in model forecasts

Flow-dependent covariances: Learn spatial/temporal structures
from past model-observation mismatches

I Train on reanalysis data
Adaptive tuning: ρ ◦ (λ · B) Learn optimal localization and inflation
dynamically using RL

⇒ AI/ML can help enrich what we know about uncertainty, not just states!
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2. Enhanced Handling of Observations ..🥝

AI to expand, correct and reinterpret observations and their usage

Observation operator correction: ML can learn forward operators
I Instead of using complex (linearized) RTMs, use a trained NN that’s

fast and tailored to the system

Pseudo-observations: Use generative AI (diffusion models, VAE) to
synthesize credible data in sparse areas

I Streamflow in un-gauged basins (Flooding), rainfall in conflict zones
I Challenge: How to assign errors?

QC and anomaly detection: Use unsupervised learning to spot bad
observations early

⇒ AI/ML can boost and refine observations, but we must understand
uncertainty to use them!
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3. Improved Efficiency ..🥥

AI as shortcut or emulator for costly model components
Surrogates/emulators: Emulate ocean BGC or cloud physics

I Pre-train on offline data, use online in the DA loop

Prior/Posterior sampling: Capture important modes/structures of
the state distribution

I Use AI to re-weight or re-sample particles based on learned likelihoods
I Ensure ensemble covers more realistic uncertainty

⇒ AI/ML can bring down computational cost without sacrificing accuracy!
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4. Better Algorithms ..🫐

AI-inspired methods to enhance the assimilation process itself

Hybrid DA-ML: Combine physical and ML-based ensembles
B = αPens + βPclim + γPML,

α+ β + γ = 1

I Errors-of-the-day using the flow-dependent ensemble
I Long term variability using the climatology
I Short-term biases with the ML ensemble

Non-Gaussian DA: Use normalizing flows for transformation
I Helps tackle heavy tails, skewness

Parameter estimation: Learn complex mappings between
observations and model parameters (e.g., soil properties, turbulence)

I Utilize Bayesian NNs to impose prior knowledge and uncertainty
⇒ AI/ML offers a bridge between theoretical advances (non-Gaussian,
nonlinearity) and practical DA systems
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5. Coupled DA ..🫒

1. Learning cross-component Covariances: Train NNs on coupled reanalyses
to learn mapping between different domains

2. Data-driven Localization: Use RL or supervised ML to adaptively select
localization radii, especially at the interface

3. Surrogate Cross-Covariance Estimators: Use generative models to sample
joint posterior distributions across components, capturing nonlinearity

4. Regime-Aware Covariance Modeling: Use classification/clustering to
identify distinct dynamical regimes (e.g., ENSO, MJO phases).
Switch/blend covariance structures accordingly
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Cross-Cutting Questions

Some big-picture thinking is needed before boarding the DA+AI train:
How do we handle uncertainty in AI-generated data?
Can AI help where physics is poorly known or data are missing?
How do we prevent overfitting when training AI on limited
geophysical data?
What new metrics are needed to evaluate AI-augmented DA?
What role should human expertise play in supervising AI-augmented
DA systems?
How modular should AI components be in operational DA systems?
Are there theoretical limits to what AI can learn about uncertainty?
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Summary of Opportunities

Theme AI Opportunity Hanging Fruit

Background
Covariance

Learn model bias,
Flow-dependent BECs

Train bias estimators,
RL for localization/inflation

Observations
Observation operators,
Pseudo-observations,
Automate QC

Generative-AI in sparse regions,
Autoencoder-based QC

Efficiency Emulate slow physical processes,
Smarter prior/posterior sampling Plug-in NN surrogates

Algorithms Hybrid DA-ML systems,
non-Gaussian transformations

Adaptive tuning,
Use normalizing flows

Coupled DA Learn cross-domain covariances
and adaptive coupling behavior

Train on reanalyses,
ML cross-covariances into EnKF
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From AI-Augmented to AI-Native DA – How to get there?

Thank You! gharamti@ucar.edu
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The Data Assimilation Research Testbed (DART)
dart.ucar.edu dart@ucar.edu


