Bridging the Gap between Fire Weather Research and Use in Operations

By Samantha J. Kramer, PhD,¹ Kayla Besong-Cowan, PhD,^{1*,2} Tyler M. Fenske,¹ Alejandro Valencia, PhD,¹ Lindsay A. Nash,¹ Brian Potter, PhD³, Ben Kirtman, PhD,⁴ ShihMing Huang,^{1*,5} Nate C. Benson,¹ and Jay Charney, PhD³

¹Sonoma Technology, Petaluma, CA, SonomaTech.com; ²Pacific Tsunami Warning Center, HI*; ³United States Department of Agriculture Forest Service; ⁴University of Miami – Rosenstiel School Cooperative Institute for Marine and Atmospheric Studies, Miami, FL; ⁵National Interagency Fire Center, ID

CLIVAR Summit, Boulder, CO July 22, 2025

Acknowledgment

 This material is based upon work supported by the NOAA/OAR Weather Program Office under Award No. NA23OAR4590383

• Team:

- Lead-PI: Samantha J. Kramer, PhD, Sonoma Technology
 - Sonoma Technology: Tyler M. Fenske, Alejandro Valencia, PhD, Nate C. Benson, Lindsay A. Nash
 - Kayla Besong-Cowan, PhD, Pacific Tsunami Warning Center*
 - ShihMing Huang, National Interagency Fire Center*
- Co-PI: Ben Kirtman, PhD, University of Miami
- Co-PI: Brian Potter, PhD, U.S. Forest Service
 - U.S. Forest Service: Jay Charney, PhD (collaborator)
- Collaborator: Hosmay Lopez, PhD, NOAA AOML
- Collaborator: Natalie Perlin, PhD, EPIC Expert

A SPHER®S ENVIRONMENTAL COMPANY

UNIVERSITY OF MIAMI
ROSENSTIEL SCHOOL OF
MARINE, ATMOSPHERIC
& EARTH SCIENCE

Background

- Fire weather indices, such as the Hot-Dry-Windy Index (HDWI),¹ are regularly used in wildfire operations to guide resource allocation and ensure safe and effective management.
- These metrics are limited by spatial and temporal resolution and are often lacking in formal verification.
- New Unified Forecast System Mid-Range Forecast (UFS S2S) prototypes forecast atmospheric conditions through four weeks.

09 Jan 2025 Max GEFS HDWI Forecast Percentiles

¹Srock, A.F., Charney, J.J., Potter, B.E., and Goodrick, S.L., 2018: The Hot-Dry-Windy Index: A new fire weather index. *Atmosphere*, 9, 279. doi: https://doi.org/10.3390/atmos9070279

Background

- Subseasonal-to-Seasonal (S2S) forecasting is a growing area and priority for decision support and improvement
 - Subseasonal: two weeks through three months
 - Seasonal: the months to two years
- S2S fire weather information may help protect life and property but must be evaluated specifically to meet operational needs.
- There is limited previous work on calibration and downscaling efforts needed to produce high-quality, high-resolution, subseasonal-to-seasonal (S2S) forecasts.

Driving Question

Are S2S forecast products, primarily the UFS, useful for fire weather decision making?

- Reduce the 'human component' burden
 - Holistic forecast performance evaluation (e.g., reliability, accuracy) grounded with real-events
 - Identify differences between tools that could lead to conflicting information or interpretation
 - Identify new patterns and signals
- Gain trust and broad use with end-users
 - Continual involvement with stakeholders through polls and workshops (federal, state, local, private, academic)
- Reduce technical barriers and spin-up time for additional research
 - All work is designed to be open-source (codes, database, documentation)

Research Components

- Iteratively communicate with fire weather end-users to guide study
- Generate open-source fire weather database and code repository
 - Reanalysis, S2S Retrospective Forecasts, Observations
- Cross comparison, analysis, and performance evaluation
 - Baseline and post processes forecast skill
 - Regression and lag analysis, pattern assessment, fire case studies
- Test downscale methods for UFS retrospective forecasts
 - Statistical, dynamical (EPIC SRW-App), machine-learning based
- Generate and demonstrate example fire weather forecast products

End-User Input

- Responses to the fire weather stakeholder poll came from a broad audience, including:
 - (Federal) National Park Service, U.S. Forest Service, National Interagency Fire Center, and National Interagency Coordination Center, including Predictive Services meteorologists from each Geographic Area Coordination Center
 - (State) California Energy Commission, California Department of Forestry and Fire Protection
 - (County) Marin Wildfire Prevention Authority
 - (Industry) Pacific Gas & Electric, Idaho Power, Sonoma Technology-Forecast Team

End-User Input

- 'Gathering User Input for Long-term Fire Weather Outlooks' workshop at the 7th International Fire Behavior and Fuels Conference, Boise, ID: April 15, 2024.
- Improve communication between research and operational sectors. Link research and end-user priorities to improve current and future project impacts.
- Bridge the language gap between research and in-field deployment.
- Gather actionable suggestions to increase understanding and trust.

End-User Input

"In my opinion, one of the biggest challenges is sifting through all the guidance (tools, data, etc.) [to] see what is useful and for what purpose. Make sure we are actually creating guidance that solves the questions we have."

Discussion Point: How do you evaluate a new product or tool?

Open-Source Tools

Code Repo: https://github.com/s2sfire/sFWRD

Database: soon to be available at the (SJSU) Wildfire Interdisciplinary Research Center

Standardized Fire Weather Research Database (sFWRD)

Code Repository

Python & Jupyter Notebooks

- Standardized environment and handling
 - Heavily annotated for transparency
- Easily transferable code base that can be re-used for study expansion and other topics
- Main data grab notebook only requires inputs
 - Dates, variables, domain
- Imported function notebook does all the lifting
- Keeps clean interface for users
- Utilizes mostly xarray
- Handles:
 - Data grabbed from:
 - AWS, Google Cloud, THREDDS, RDA, Copernicus
 - File types:
 - grib, grib2, netcdf, zarr

GitHub: https://github.com/s2sfire/sFWRD
*preliminary, in-progress

sFWRD: Data That is Ready-To-Use!

Files are netCDF with the same columns, naming convention, formats, structure throughout. All variables have the same names, abbreviations, units across all models. Sub-daily, as available, and daily aggregates (min, max, avg).

sFWRD: 'Period Normal'

- Anomalies typically computed by subtracting the 30-yr mean to capture long-term trends.
- Harmonics provide a better fit to low-frequency variations than a simple mean with less than 30 years of coverage.
- Spatial variability of harmonics coefficients resolves known physical features.
- Harmonics will be used to help evaluate S2S forecast skill.

Machine Learning for a Higher Resolution Forecast

- Three Methods Tested
 - Convolutional Neural Networks (CNN),
 - Generative Adversarial Networks (GAN)
 - UNET (CNN based package)
- Trained with supervised learning approach: mean squared error (MSE) loss
- No specialized tuning of parameters applied

UFS Forecast & Dynamic Downscaling

Forecast Performance Evaluations

- For all UFS S2S fire weather variables (4 prototypes) at its native output resolution (0.25°)
 - [WS, WS-gust, PR, T2, RH, HDW, FFWI, VPD, and CAPE]
 - Root-mean-square error
 - Mean-absolute error
 - Correlation
 - Reliability scores
 - Comparison to reanalysis at the gridded level, observation at point locations
- Direct and usable metrics for confidence/accuracy/reliability of UFS S2S forecast products by week!

Summary

- Project is guided by stakeholder feedback and includes prototyping forecasts with each approach to evaluated operational potential
- Unified code base with standardization implemented for this work will be publicly available to be leveraged in other projects and to expand this work
 - Will reduce 'spin-up' time for UFS and reanalysis projects
 - Will allow for easier transition to operations for future UFS S2S forecast products (back-end environment complete)
- Includes regions typically excluded from CONUS model evaluations where possible (i.e., AK, HI)
- We are adding in analysis studies to guide and inform work along the way

Summary

- National scale forecast performance is generally strong, localized performance varies significantly
- ML-based downscaling can enhance the visual appeal and interpretability of forecasts for end-users.
 - ML methods do not necessarily translate into better technical performance.
- Variables like T2 and VPD showed better performance compared to WS.
- Future work should explore training with global datasets (teleconnection patterns), which may influence local outcomes.
- Further experiments with model tuning and regional customization could unlock more meaningful gains in forecast accuracy and reliability.
- Dynamical downscaling may be a promising solution to the wind speed low-bias
- Even without downscaling, long-range forecasts are promising for many variables