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There is never enough money for observations

• [left] During the Great Recession, we wondered how to 

best use limited resources to observe the ocean.
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There is never enough money for observations
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• [left] During the Great recession, we wondered how to 

best use limited resources to observe the ocean.

• [bottom] Later we found that market performance is not 

correlated with the investment in Earth science

Take home message: we will always need to be efficient 

with our observational investments.



Outline

• Use the HAB example to break down the assessment of the observing strategy 
into intuitive steps.

• Review the state of the art in observing system assessments

• Take a pick into the AI-powered future
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Quick primer on HABs
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Satellite can sense “bulk” 
phytoplankton presence but it is 

often obscured by clouds. 
Chl-a imagery is not sufficient to 
detect presence of “toxic” event. 

From the beach water samples, 
we can detect “toxic” species of 

the phytoplankton.

From the beach water samples, 
we can measure the actual 

levels of toxins.

Trainer et.al 2020. NOAA Fisheries. 

High levels of domoic acid can 
lead to marine mammal 

mortality (image above does not 
correspond to the specific event 

on the left)



Key questions
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How reliable is the satellite 

imagery for bloom detection?

How representative is shore 

sampling of the off-shore 

conditions?



Using time correlations to quantify value of the satellite imagery
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SIO: Scripps
SM: Santa Monica

M: Monterey

T: Trinidad

+

Mean days between 
consecutive MODIS pixels

Chl-a temporal correlation from 
automated sensors installed on 

wharfs

R2 statistics for MODIS 
effectiveness

Southern California is well 
observed: slow blooms, 
frequent imagery.

Northern California is still well 
observed: faster blooms, still 
frequent imagery.

OR/WA are poorly observed:
Fast bloom dynamics, cloudy 
skys. 

Description of the 
observing system

Description of the process 
statistics (usually as 
correlation functions)

Some measure of fitness for purpose:
e.g. [forecast error with obs]/[forecast 

error no obs]

Frolov et.al 2012.



Zoom in 2025
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IPhone 5 IPhone 15

https://www.digitaltrends.com/

Most of the core observing system evaluation theory was developed in early 2000s. 
Now we finally have the tools to apply it at scale



Scaling this up to 2025: FSOI

• Modern data assimilation 
machinery can quantify value 
of each individual observation:

– Value is defined by reduction of 
errors in future forecasts. 

9
Drake et.al 2023

HF-Radar



Scaling this up to 2025: FSOI

• Modern data assimilation 
machinery can quantify value 
of each individual observation:

– Value is defined by reduction of 
errors in future forecasts. 

– Could be computed for complex 
cost functions (e.g. upwelling, 
water vapor flux, etc.)

– Works best for well tuned 
“operational” suite of 
observations. 

– Accounts for all interactions 
between components of the 
observing system.

– Tricky to extend to “hypothetical” 
observations. 

– Different implementation of data 
assimilation systems might give 
slightly different answers.
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Drake et.al 2023: Coastal California

HF-Radar



Scaling this up to 2025: Value of hypothetical observations

• Systematic Observation Financing Facility (WMO/UNDP) requested ECMWF to quantify value 
of additional conventional observations in least developed countries.

• ECMWF found significant added value of observations in:
– Africa.
– Small island nations. 

• This was relatively easy to do for “conventional” observations.
• A shortcut was taking for looking at analysis skill vs forecast skill (e.g. no need for an 

expensive Nature Run).  11

ECMWF/WMO 2025: impact of additional surface and upper air observations 

on reduction in analysis uncertainty



What have we learned so far

• Mathematics and mechanics of assessing value of observations is relatively well 
understood:
– Best done using a well-tuned data assimilation and forecast system.
– Best done for well understood observations.

• Difference between evaluating 
– Existing observations (OSE, FSOI) and
– Novel observations (OSSE).

• But what about:
– Very complex forecast cost functions and 
– Very complex observations?
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Scaling beyond 2025: complex cost functions

• [left] In 1990th Bishop pioneered the idea of targeted observations for winter storm forecasts. 
– His results very large scale and the targeted flight program has been terminated after a decade. 

• [right] Modern tools can be based on AI model adjoints and are much more precise (targeting 
frontal features)

– Flights have resumes to improve forecast of Atmospheric rivers over CA. 
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Bishop and Toth 1999 Bano-Medina et.al 2025



Scaling beyond 2025: complex cost functions

• [right] As end-to-end AI models expand, they could include 
such complex factors as reservoir storage and runoff. 
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Bishop and Toth 1999 Bano-Medina et.al 2025

Forecast Informed Reservoir operations

Damage to the Oroville dam spillway in 2017



Scaling beyond 2025: novel observations

• Understanding the value of novel observations 
requires:
1. Expensive nature runs.
2. Observations operator for novel observations.
3. Optimal data assimilation for novel observations.

• [left] study by Liu et.al 2022 on the potential 
satellite observing system for ice cloud 
microphysics.
– Required significant investment into development 

of novel data assimilation methods.
• New AI-based capabilities can rapidly 

train/develop optimal DA system from (1) and (2) 
above. 
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Summary

• Quantifying value of observing systems is a mature field and is routinely used to 
fly targeted sampling and design future satellite missions. 

• However, application of optimal design had a high start up cost (e.g. access to 
a well tuned data assimilation system)

• Upcoming AI methods will significantly reduce the cost of designing optimal 
experimental strategies. 
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