

Systematic Exploration of S2D Predictability Limits

Steve Yeager and colleagues

NSF NCAR Boulder, CO, USA

> US CLIVAR Summit July 21-23, 2025

Observations:

$$X = \chi + x = \chi_f + \chi_i + x$$

Potentially Predictable Noise

→ real world predictability:

$$p = \frac{\sigma_\chi^2}{\sigma_X^2}$$

→ inherent prediction skill limit:

$$r_{max} = \sqrt{p} \le 1$$

Theoretical, not quantifiable!

Predictability Limits

Decadal predictability and forecast skill

G. J. Boer · V. V. Kharin · W. J. Merryfield

Large ensemble limit $(m \to \infty)$

 $q = \frac{\sigma_{Ya}^2}{\sigma_{Za}^2}$

- Observations: $X = \chi + \chi = \chi_f + \chi_i + \chi$
- Initialized Predictions: $Y = \psi + y = \psi_f + \psi_i + y$

Potentially Predictable Noise

 \Rightarrow ensemble average: $\sigma_{Y_a}^2 = \sigma_{\psi_f}^2 + \sigma_{\psi_i}^2 + \frac{1}{m}\sigma_y^2 \xrightarrow{\checkmark} \sigma_{\psi_f}^2 + \sigma_{\psi_i}^2 = \sigma_{\psi}^2$

→ model potential predictability:

 \rightarrow model skill at predicting real world: $r \leq r_{max}$

Quantifiable, but unclear how it relates to real world

Validation against observations is only reliable approach for estimating r_{max}

Seasonal Hydroclimate Prediction

- CESM2-SMYLE system (~10K sim-years)
- 1979-2021 verification against GPCPv2.3
- Low skill over CONUS even at short leads

Seasonal Hydroclimate Prediction

 1970-2020 verification against (CRU-TS4.05, HadISST)

Seasonal Hydroclimate Prediction

- CESM2-SMYLE system (~10K sim-years)
- 1979-2021 verification against GPCPv2.3
- Low skill over CONUS even at short leads

Are we underestimating real world hydroclimate predictability? Why and by how much?

SMYLE-NOV

- E3SMv2.1-SMYLE system (~10K sim-years)
- Different component models but uses similar methods as CESM2-SMYLE
- Early analysis suggests no systematic, significant* skill difference for Niño3.4 or hydroclimate over CONUS

Nov init

Precipitation, no-detrend

CESM2-SMYLE-NOV

E3SM - CESM2

E3SMv21-SMYLE-NOV

- E3SMv2.1-SMYLE system (~10K sim-years)
- Different component models but similar methods as CESM2-SMYLE
- Early analysis suggests no systematic, significant* skill difference for Niño3.4 or hydroclimate over CONUS

May init

 40-member multi-model system yields only minor improvements (significance uncertain)

- SMYLE skill over CONUS is comparable to NMME
- NMME has shown slight CONUS skill degradation over time (unclear why)

Becker et al. (2014, doi:10.1175/JCLI-D-13-00597.1, 2020, doi:10.1029/2020GL087408)

- SMYLE skill over CONUS is comparable to NMME
- NMME has shown slight CONUS skill degradation over time (unclear why)

How to (systematically) advance understanding of practical predictability limits?

Becker et al. (2014, doi:10.1175/JCLI-D-13-00597.1, 2020, doi:10.1029/2020GL087408)

Prediction Pacemakers

CLIVAR Tropical Basin Interaction MIP (TBIMIP)

Richter et al. (2025, doi:10.5194/gmd-18-2587-2025)

- TBI-ATL = CESM2-SMYLE (Feb 1 init) with tropical Atlantic SST nudged to observed anomalies
- → perhaps low tropical Atlantic predictability contributes to low CONUS hydroclimate skill
- challenging to interpret
- expensive

Decadal Hydroclimate Prediction

- CESM2-DP system (~15K sim-years)
- New CESM2-DP system shows some precipitation skill improvement over CESM1-DPLE
 - modified component physics
 - modified ocean initialization
 - *new* land initialization
- To understand skill improvement, need to examine prediction system developments in isolation (expensive, labor-intensive)

Decadal Hydroclimate Prediction

- CESM2-DP system (~15K sim-years)
- New CESM2-DP system shows some precipitation skill improvement over CESM1-DPLE
 - modified component physics
 - modified ocean initialization
 - *new* land initialization
- Qualitatively similar to skill improvements seen in CESM1 highresolution DP system

Decadal Temperature Prediction

 Similar improvements in SST skill: SE tropical Pacific Southern Ocean

Detrended Surface Temperature Skill

Decadal Temperature Prediction

- Similar improvements in SST skill: SE tropical Pacific Southern Ocean
- Hypothesized connection between SO and CONUS hydroclimate via tropical Pacific

Detrended Surface Temperature Skill:

Decadal Temperature Prediction

- SAT skill improvements are related to improved representation of multidecadal trends in the Pacific (and SO)
- → More to this story than just model resolution...

1979-2018 SAT Trends:

Prediction Drift

- Systematic exploration of how predictability limits depend on system design choices (model physics, resolution, parameters, initialization, etc.) is difficult, but necessary
- Large reforecast sets generally required to quantify model (biased) lead-dependent climatology before verifying forecast anomalies

Surface Temperature Bias:

Prediction Drift

 Efficient de-drifting techniques can facilitate expanded case study experimentation with tolerable error

(Yeager et al., 2025: Efficient Drift Correction of Initialized Earth System Predictions, *submitted*)

Conclusions

- Unclear why high ENSO skill does not yield good skill for seasonal CONUS hydroclimate (inherent limits? system deficiency?)
- To first-order, CESM2 and E3SMv2.1 exhibit similar seasonal predictability (despite very different background mean states); more in-depth, event-focused comparisons may yield useful insight
- Improved decadal prediction skill in CESM2 (relative to CESM1) is promising and appears attributable to SO-related mechanisms revealed by high-res CESM1 efforts (improved trend representation)
- Systematic experimentation is needed to better understand S2D predictability limits
 - coordinated experiments (e.g., CLIVAR TBI, DCPP CMIP7, CESM2/E3SMv2.1)
 - prediction case study experiments to isolate senstivities