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Disclaimers
● The focus of this presentation is on the potential for Machine Learning Weather 

Prediction (MLWP) to fully replace operational Numerical Weather Prediction (NWP).

● This presentation discusses AI/ML models that are available right now. It does not 
predict the future, but will describe some fundamental challenges that must be 
addressed.

● There are many different ways that AI/ML can be incorporated into the NWP 
forecast/analysis cycle that serve to replace key components of this process. I discuss 
this in more detail in my talk at the ECMWF:
Workshop report: “2022 ECMWF-ESA workshop report: current status, progress and 
opportunities in machine learning for Earth System observation and prediction”
https://www.nature.com/articles/s41612-023-00387-2 
ECMWF-ESA Machine Learning Workshop keynote presentation: 
https://vimeo.com/770758490/bac45588aa 

https://www.nature.com/articles/s41612-023-00387-2
https://vimeo.com/770758490/bac45588aa


Applying DA with AI/ML
Olivier Talagrand categorized methods based on statistical estimation theory:

“In the late sixties, the development of satellite observing systems, and the 
perspective that synoptic observations, performed more or less continuously 
in time, would become more and more numerous in the future, led to the 
notion that the dynamical evolution of the flow should be explicitly taken 
into account in the very definition of the initial conditions of the 
forecast. The word assimilation was coined at that time for denoting a 
process in which observations distributed in time are merged together with a 
dynamical numerical model of the flow in order to determine as accurately as 
possible the state of the atmosphere” (Talagrand, 1997)



From Observations to Trajectory Estimates

Mapping directly from observations to the trajectory of a dynamical 
system is in practice an “ill-posed problem”

i.e. it is a mathematical problem where one or more of the conditions for 
well-posed problems are not met: 
● existence of a solution, 
● uniqueness of the solution, and 
● stability (continuous dependence of the solution on the input data). 

An ill-posed problem might not have a solution, might have multiple 
solutions, or its solution might be highly sensitive to small changes in 
the input. (Hadamard 1923)
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Therefore in DA, “all the available information is used in order to 
estimate as accurately as possible the state” Talagrand (1997)



Key properties of Data Assimilation
● It is cycled - DA itself is a dynamical system, and any forecast system must 

be synchronized with nature via information provided from the 
observations in order to trust the resulting forecast

● Due to the sparsity* of observations, it is necessary to have a complete 
“first guess” or background/prior of the atmospheric state that carries 
information from the past to the present (Gilchrist and Cressman 1954; 
Bergthorsson and Doos 1955), from observed to unobserved variables, and 
from upstream observed areas to downstream unobserved areas

● Carefully estimates and accounts for errors in observations and the 
trajectory of the dynamics to determine the most likely state and its 
uncertainty - typically relying on Bayesian inference, which means the 
result is a probability distribution

*relative to the total number of possible observations for all essential physical variables at all points in the 3D volume of the global atmosphere - modern observing 
systems are still sparse relative to resolved scales in operational forecast models.



A history of using observations in forecasting
The telegraph, invented in 1837 and first used to send meteorological data in 
1844, made the construction of near real-time (NRT) forecasts possible.

19681880

Permitted the 
hand-construction of 

an “analysis” of the 
atmosphere, 

including High and 
Low pressure 
systems, wind 

patterns, and frontal 
storm systems - an 
approach that was 

used for 100+ years.



A history of using observations in forecasting
Methods Data Assimilation

● Incorporate a ‘first guess’ or 
‘background field
○ Using climatology - Gandin 

(1963), Bergthorsson and Doos 
(1955)

○ Using short-range forecasts
● Multivariate statistical DA

○ Static: Objective analysis, 3D-Var
○ Dynamic (i.e. leveraging flow 

dynamics): 
■ 4D-Var (Courtier and 

Talagrand, 1990), 
■ Ensemble Kalman Filter, and 

hybrids

Objective analysis 
schemes: 
Panofsky (1949), 
Gilchrist and Cressman 
(1954), Barnes (1964, 
1978)

Newtonian relaxation / 
Nudging schemes:
Hoke and Anthes 
(1976), Kistler (1974)
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This is where most 
current AI/ML-based 

“data assimilation” 
approaches are 

categorized.



Machine Learning Weather Prediction (MLWP)

https://raspstephan.github.io/blog/ai-weather-progress/#  Last updated November 2024

● In the last 5 years, 
MLWP models have 
advanced rapidly

● In the last 2 years, they 
seem to have plateaued.

● These models all depend 
on NWP inputs

● Models including 
attempting an 
end-to-end solution 
show the weaknesses in 
MLWP and a more 
realistic picture of 
where they “really stand”

https://raspstephan.github.io/blog/ai-weather-progress/#


Machine Learning Weather Prediction (MLWP)

https://raspstephan.github.io/blog/ai-weather-progress/#  Last updated November 2024

● In the last 5 years, 
MLWP models have 
advanced rapidly

● In the last 2 years, they 
seem to have plateaued.

● These models all depend 
on NWP inputs

● Models including 
attempting an 
end-to-end solution 
show the weaknesses in 
MLWP and a more 
realistic picture of 
where they “really stand”

Big-tech driven 
advances (i.e. scale)
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4D-Var applied in a 
conventional cycled 

DA system to produce 
viable forecasts.
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● In the last 5 years, 
MLWP models have 
advanced rapidly

● In the last 2 years, they 
seem to have plateaued.

● These models all depend 
on NWP inputs

● Models including 
attempting an 
end-to-end solution 
show the weaknesses in 
MLWP and a more 
realistic picture of 
where they “really stand”

End-to-end with 
“data assimilation”

Without key 
properties in the 
models, simply 

replacing the NWP 
forecast model with 

AI/ML is not 
sufficient.

https://raspstephan.github.io/blog/ai-weather-progress/#


Some principal challenges in ML Weather 
Prediction (MLWP) today
1. The “Blurriness” challenge (no, this not a feature)

a. Models are trained to score on forecaster metrics (not modeling metrics)

b. Models do not reproduce spectral characteristics (this is not physical)

2. The sensitivity challenge: producing accurate Jacobian and 
ensemble forecast correlation/covariance statistics

3. The Discerned Learning challenge: AI/ML models learn 
“everything” not just model physics

4. The Evaluation challenge: how to measure whether a forecast 
is skillful?
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The sensitivity challenge

There are multiple sources of uncertainty in forecasts. Ensemble forecasts 
attempt to estimate these:
● Initial conditions (chaotic dynamics)
● Background distribution accuracy (Bayesian prior)
● Observation errors (aleatoric uncertainty)
● Systematic errors in the model (epistemic uncertainty)



Hakim and Masanam (2024) “Dynamical Tests of a Deep Learning Weather Prediction Model”
https://journals.ametsoc.org/view/journals/aies/3/3/AIES-D-23-0090.1.xml 

AI/ML Weather models resolve large scales

Solution at 500 hPa for a localized 
disturbance on the DJF atmosphere. 
The “time evolution of a localized 
500-hPa trough at the western end of 
the North Pacific storm track, which is 
the canonical initial condition preceding 
surface cyclogenesis.” 

At large scales, MLWP models produce 
“signal propagation and structural 
evolution qualitatively in accord with 
previous research in meteorology”

Left - Solution at 500 hPa for a localized 
disturbance on the DJF-averaged 
atmosphere state using PanguWeather. 
Geopotential height is shown by gray lines, 
every 60 m.

Right - Contour: Anomalies in mean sea level 
pressure. Shaded: Water vapor specific 
humidity anomalies (g kg−1) at 850 hPa.

Geopotential height

SLP

specific humidity 
anomaly at 850 hPa

0 days 
(initial 
condition)

2 days

3 days

4 days

https://journals.ametsoc.org/view/journals/aies/3/3/AIES-D-23-0090.1.xml


The ensemble sensitivity challenge

Graphcast MPAS-A (reference truth)

Tangent linear model (TLM) 
response after 6 hours for zonal 

wind. Comparing (left) 
DeepMind’s Graphcast to (right) 

NCAR’s physics-based Model 
for Prediction Across Scales 

(MPAS-A)

Initial perturbation 
applied here

The accuracy of the ensemble statistics is dependent 
on how the model responds to small perturbations in 
initial conditions. Horizontal

Vertical

Note large errors in the vertical 
response

Tian, Holdaway, Kleist (2024) “Exploring the use of Machine 
Learning Weather models in Data Assimilation” 
https://arxiv.org/pdf/2411.14677 

https://arxiv.org/pdf/2411.14677


The ensemble sensitivity challenge
Tian, Holdaway, Kleist (2024) “Exploring the use of Machine 
Learning Weather models in Data Assimilation” 
https://arxiv.org/pdf/2411.14677 

The Adjoint sensitivity 
study determines the 

upstream impact of the 
model on a particular point, 

6 hours prior.

Graphcast MPAS-A (reference truth)

Temperature

Zonal Wind

Specific 
Humidity

https://arxiv.org/pdf/2411.14677


The ensemble sensitivity challenge
Tian, Holdaway, Kleist (2024) “Exploring the use of Machine 
Learning Weather models in Data Assimilation” 
https://arxiv.org/pdf/2411.14677 

Graphcast MPAS-A (reference truth)

Temperature

Zonal Wind

Specific 
Humidity

The impacts in the vertical are 
particularly poor in the MLWP 

model.

Minimal impacts for 
temperature, noisy impacts 
for zonal winds, and large 

spurious impact for specific 
humidity.

hPa

https://arxiv.org/pdf/2411.14677


The ensemble sensitivity challenge

Slivinski et al. (2025) “Assimilating Observed Surface Pressure Into 
ML Weather Prediction Models” 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL1
14396 

All of the MLWP models 
underperform the 

1-degree NOAA Unified 
Forecast System (UFS) 

NWP model when applied 
within an 80-member 

ensemble Kalman filter. 

Only the hybrid 
physics/ML model makes 

it beyond a 30-day 
cycling experiment.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL114396
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL114396


Why does it matter how the model responds to 
perturbations in initial conditions?
Weather is an archetypal example of a chaotic dynamical system

In 2005, Edward Lorenz visited my advisor Eugenia Kalnay in her office at U. Maryland. At some point during his 
stay, he penned this on piece of paper - which later hung on her door for the entire duration of my Ph.D.:

“Chaos: When the present determines the future, 
but the approximate present does not 
approximately determine the future.”



The (time dependent) 
Jacobian of the system 
describes how this small 
volume of initial states 

changes over time.







“Lyapunov exponents are key tools for measuring 
chaos in dynamical systems. They quantify how fast 
nearby trajectories diverge or converge, revealing 
whether a system is stable, periodic, or chaotic.”





Why does this matter?

The fundamental feature of any 
model that makes it successful at 
forecasting chaotic systems is the 
recovery of the Lyapunov spectrum.

Why? 

Otherwise, errors grow exponentially 
in the dimensions that are not 
resolved by the model. 

Platt, Penny, Abarbanel, et al. (2021) “Robust forecasting using predictive generalized synchronization 
in reservoir computing” https://doi.org/10.1063/5.0066013 

https://doi.org/10.1063/5.0066013


Are large ML ensembles useful?
Penny et al. (2022) “Integrating Recurrent Neural Networks With Data Assimilation for Scalable Data-Driven State 
Estimation” https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843 

Typical NWP data assimilation:
This is the typical process of 

data assimilation for NWP

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843


Are large ML ensembles useful?
Penny et al. (2022) “Integrating Recurrent Neural Networks With Data Assimilation for Scalable Data-Driven State 
Estimation” https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843 

Augmented data assimilation: Here we add an additional 
abstraction layer and 

compute in the 
hidden/reservoir/latent 

space.

Example error correlations throughout a sample 
forecast for the L96 numerical versus ML model

ML

ODE

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843


Are large ML ensembles useful?
Penny et al. (2022) “Integrating Recurrent Neural Networks With Data Assimilation for Scalable Data-Driven State 
Estimation” https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843 

Augmented data assimilation: Important test for DA: assimilate sparse 
observations and then cycle the system…

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843


Summary: The sensitivity challenge

Why is the system Jacobian so important?

1) The system Jacobian produces the tangent linear model, adjoint, and describes ensemble 
response to perturbations in initial conditions at a given point in state space. This is critical to get 
the correct ensemble spread and statistics.

2) The Lyapunov vectors and Lyapunov exponents are produced by integrating the Jacobian over 
time - getting the Lyapunov spectrum correct is a requirement for producing an accurate forecast 
model of any chaotic dynamical system (like the weather). This is foundational.

A key test for the ability of  MLWP models to reliably produce usable statistics is thus to validate that 
they produce the correct state-dependent Jacobians.

Today that is not the case.



Employ advanced data assimilation (DA) methods
Solvik, Penny, and Hoyer (2025) “4D-Var Using Hessian Approximation and Backpropagation Applied to Automatically Differentiable Numerical 
and Machine Learning Models” https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004608 

Leveraging (A) automatic differentiation and (B) ML software tools 
to minimize the data assimilation cost function
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004608


DataAssimBench
Solvik, Penny, and Hoyer (2025) <in prep> Google-funded development of a utility for integrating AI/ML with Data 

Assimilation (with JAX support) benchmarking and “work bench”, 
inspired by WeatherBench

https://github.com/StevePny/DataAssimBench 
https://github.com/StevePny/DataAssimBench-Examples 

https://github.com/StevePny/DataAssimBench
https://github.com/StevePny/DataAssimBench-Examples


The Discerned Learning Challenge

What we’d like: the underlying system dynamics of the real-world/nature



What we’d like: the underlying system dynamics of the real-world/nature

Actual Answer: Everything it can from the training data, even things you may 
not want

The Discerned Learning Challenge



The Discerned Learning Challenge

Lorenz-96

● The best models trained on datasets 
generated by different numerical 
integrations methods cross validated

● Prediction skill is significantly worse when 
predicting across integration methods

● Highlights dangers in using reanalysis 
datasets as “truth” for ML training

Chen, Penny, Smith, Platt (2025) “Machine Learned Empirical Numerical Integrator from Simulated Data” https://doi.org/10.1175/AIES-D-23-0088.1

https://doi.org/10.1175/AIES-D-23-0088.1


The Discerned Learning Challenge
Chen, Penny, Smith, Platt (2025) “Machine Learned Empirical Numerical Integrator from Simulated Data” https://doi.org/10.1175/AIES-D-23-0088.1

Lorenz-96 Lorenz-63

● The best models trained on datasets 
generated by different numerical 
integrations methods cross validated

● Prediction skill is significantly worse when 
predicting across integration methods

● Highlights dangers in using reanalysis 
datasets as “truth” for ML training

● A 16x subsampling of training data 
significantly reduces forecast skill

● E.g. ERA5 6-hour timestep versus IFS with a 
720s timestep is 30x subsampled, or versus 
FV3 nonhydrostatic 150s timestep is 144x.

● Highlights dangers in temporal 
subsampling in reanalysis datasets for ML 
training

https://doi.org/10.1175/AIES-D-23-0088.1


The Discerned Learning Challenge

● Choice of Model(s)
● Integration method for the 

dynamics
● Model time step and output 

frequency
● Physics parameterizations
● Data assimilation analysis method

○ Ensemble behavior
○ Tangent linear / adjoint

● Static background error estimate
● Dynamic background error estimate
● Hybrid weighting choices

A reanalysis dataset like ERA5 has many sources of hidden ‘noise’, 
for example:

● Set of observation platforms 
assimilated

● Observation network spatial 
structure

● Observation quality control
● Observation instrument errors
● Observation representativeness 

errors
● Observation error correlations
● Observation platform biases
● Observation bias correction 

method



● AI/ML models learn everything and do not filter physics from 
numerics and other assumptions/choices made in the training set

● To build true observation-to-forecast capabilities, all of the 
considerations that have gone into products like ERA5 and 
operational forecast systems must be accounted for within 
MLWP models

Summary: The Discerned Learning Challenge



In conclusion: What does DA bring to AI/ML?
● Awareness of the weather as a chaotic dynamical system - a feature that has 

been leveraged by the most successful DA approaches (e.g. 4D-Var, EnKF)
● Can deal with sparse observations to produce full atmospheric state 

estimates - a key test
● Treatment as a Bayesian inference problem, building a trajectory from past 

states to future states
● Careful accounting of the errors in observations, in the forecast model, and in 

system state estimates
● A focus on observations as a measure of truth - not reanalysis datasets, which 

are themselves a product of DA
● The expert knowledge that goes into building renalysis systems that must be 

incorporated into the next generation of observation-to-forecast AI/ML 
approaches (there are no datasets to machine learn this from today)



Stephen G. Penny
Head of Weather

+1.415.230.2299
steve.penny@sofarocean.com   
www.sofarocean.com

Access our global Spotter 
sensor weather network:

weather.sofarocean.com

Fin

mailto:steve.penny@sofarocean.com
https://www.sofarocean.com
https://weather.sofarocean.com/signup


Appendix



ML obs-to-forecast examples
● “Data Assimilation” (ML) Interfaced ML forecast model

○ FuXi-Weather: Sun et al. (2024) https://arxiv.org/abs/2408.05472 
● “Data Fusion” - (multiple observation types mapped to an analysis)

○ Manshausen et al. (2025) https://arxiv.org/pdf/2406.16947 
○ Maddy et al. (2024) https://ieeexplore.ieee.org/document/10520901 

● “Multivariate Autoregression” (multiple observation types mapped to a forecast)
○ Aardvark: Allen et al. (2025) 

https://www.nature.com/articles/s41586-025-08897-0 
○ McNally et al. (2024) https://arxiv.org/pdf/2407.15586 
○ Alexe et al. (2024) https://arxiv.org/pdf/2412.15687 

https://arxiv.org/abs/2408.05472
https://arxiv.org/pdf/2406.16947
https://ieeexplore.ieee.org/document/10520901
https://www.nature.com/articles/s41586-025-08897-0
https://arxiv.org/pdf/2407.15586
https://arxiv.org/pdf/2412.15687


Details of Aardvark
● It’s not cycled

○ No recognition or addressing of chaotic dynamics
○ No evolution of dynamical forecast errors
○ No Bayesian Inference (in time)

● Uses a 24-hour analysis window but does not use a background field
● It’s not clear how the temporal and spatial relationships of the observations is 

handled

Issues:
● ERA5 is used for training and as “ground truth” for evaluating forecasts
● “Outperforms” the GFS, except for z500, versus ERA5

(GFS is closer to GFS analysis, and ECMWF IFS is closer the ECMWF 
analysis, so this is not a meaningful result)



Details of FuXi Weather
● Cycles, using background and observations in 8-hour window (+)
● It’s not clear how the temporal and spatial relationships of the observations is 

handled during the FuXi-DA step 

Issues:
● “the analysis fields from FuXi-DA are less accurate than ERA5, resulting in a 

marked degradation in forecast performance”
● “FuXi Weather consistently outperforms ECMWF HRES in observation sparse 

regions, such as central Africa”



AI/ML Weather models resolve large scales

AI/ML “Weather” models seem to recover planetary-scale dynamics at subseasonal timescales

Vonich and Hakim (2024): “Predictability Limit of the 2021 Pacific Northwest Heatwave From Deep-Learning 
Sensitivity Analysis” https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL110651 
 

MLWP models do have sensitivity 
to initial conditions at large 
spatial scales (e.g. > 500-700km) 
and long time scales (e.g. > 5-10 
days).

Original ERA5 
analysis versus 
1.0º GraphCast 
forecast from 
ERA5 initial 
conditions

GraphCast 
forecast after 
optimizing initial 
conditions 
(globally or 
regionally)

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL110651


AI/ML Weather models resolve large scales

AI/ML “Weather” models seem to recover planetary-scale dynamics at subseasonal timescales

Vonich and Hakim (2024): “Predictability Limit of the 2021 Pacific Northwest Heatwave From Deep-Learning 
Sensitivity Analysis” https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL110651 
 

Caveat:

Does not necessarily pull initial 
conditions closer to the 
observations.

“the optimal initial condition 
increases forecast error relative 
to ERA5 for lead times less than 
a day, followed by increasingly 
large improvements nearly 
everywhere as lead-time 
progresses”

GraphCast 
forecast after 
optimizing initial 
conditions 
(globally or 
regionally)

Analogy:
Adjusted Regression Line

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL110651


AI/ML Weather models resolve large scales

ML models can capture similar patterns of anomaly correlation 
as NWP models

Local anomaly correlation of 
column-integrated tropical diabatic heating 

week-2 forecasts.

ML

ML

NWP

NWP



AI/ML Weather models resolve large scales
Newman et al. (2003) “A Study of Subseasonal Predictability” https://doi.org/10.1175//2558.1 

Local anomaly correlation of 
column-integrated tropical diabatic heating 

week-2 forecasts.

LIM

LIM

NWP

NWP

B = exp(A)

Penland, C. (1989) “Random forcing and forecasting 
using principal oscillation pattern analysis” 
https://doi.org/10.1175/1520-0493(1989)117<2165:RF
AFUP>2.0.CO;2 

ML models can capture similar patterns of anomaly correlation 
as NWP models - the linear inverse model (LIM) from 1989:

https://doi.org/10.1175//2558.1
https://doi.org/10.1175/1520-0493(1989)117%3C2165:RFAFUP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117%3C2165:RFAFUP%3E2.0.CO;2


How can we leverage AI/ML in 
operational forecasting today?



How can we leverage AI/ML in operational forecasting today?

Build operational forecast systems that are world-leading today 
while leveraging what AI/ML has to offer:

Step 1: Focus AI/ML to enhance NWP. This includes mapping, 
averaging, and combining forecasts, observations, and 
simulations efficiently and effectively

Step 2: Modernize physics-based forecast models. Ensure they 
(a) run on GPUs, (b) support automatic differentiation, and 
(c) can interface with ML models and ML optimization

Step 3: Employ advanced data assimilation (DA) methods. The 
aim is to simultaneously leverage as many observations as 
possible, and eliminate dependency on external NWP 
analysis products (e.g. ECMWF HRES initial conditions)



Are large ensembles useful?

Yes, we know that large ensembles can be used to: 
● Reduce the need for ad hoc horizontal 

localization schemes and produce more 
accurate analyses

● Eliminate the need for vertical localization, 
which is challenging to apply with vertically 
integrated observations (e.g. AVHRR/VIIRS 
radiometers)

Ensemble error correlations with respect to the 
center point at 46.4ºN, 176.3ºW (yellow star) 
computed with 3.75º x 3.75º SPEEDY model.

20 
members

80

320

1,280

10,240

Miyoshi et al. (2014) The 10,240-member ensemble Kalman filtering with an intermediate AGCM
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL060863 

Q

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL060863


Are large ensembles useful?

Yes, we know that large ensembles can be 
used to: 
● Resolve non-Gaussian forecast 

distributions.

Even at low resolution (i.e. 3.75º x 3.75º), bimodal 
distributions arise in 6-hour forecasts for fields 
such as the specific humidity (Q) with ensemble 
sixes > 1,000.

20 
members

80

1,280

10,240

16.7ºN, 135ºE 16.7ºN, 150ºE

Histogram of Q (g/kg)

Miyoshi et al. (2014) The 10,240-member ensemble Kalman filtering with an intermediate AGCM
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Are large MLWP ensembles useful?

Answer: No, not yet.

Three examples to test validity of model response to perturbations in the state:
1. Tangent Linear Model (TLM) tests show the impact of a small perturbation 

to the initial conditions.
2. Adjoint model tests show the “upstream” changes to a model needed to 

produce the resulting
3. A cycled Ensemble Kalman Filter (EnKF) quantifies the accuracy of 

forecast error covariance statistics, which describe the first order 
relationships between all variables both locally and at a distance.



Applying DA with AI/ML

From Olivier Talagrand, one of the most influential figures in DA in the last 40 
years categorizes methods based on statistical estimation theory:

“Assimilation of meteorological or oceanographical observations can be 
described as the process through which all the available information is used 
in order to estimate as accurately as possible the state of the atmosphere or 
oceanic flow. The available information essentially consists of the 
observations proper, and the physical laws that govern the evolution of the 
flow. The latter are available in practice under the form of a numerical model. 
The existing assimilation algorithms can be described as either sequential or 
variational.” (Talagrand, 1997)


