The wildfire science we have, the gaps we face & why it matters

Virginia Iglesias

The Geologic Time Spiral—A Path to the Past

The fire triangle

Parameters, processes & state variables

Climate- vs. fuel-limited

The fire regime

Cochrane & Bowman, 2021, Nature Geoscience.

4 times larger, 3 times more frequent

Fires are more intense

Cunningham et al., 2024, Nature Ecology & Evolution

Photo: Al Zulkifli; Getty Images Joint Economic Committee report, 2023. \$394 - 893 billion Experiencing wildfires increases willingness-to-pay

for climate mitigation policy

Gould et al., 2024. Global Environmental Change.

Fire **risk** is the potential for damage

Vegetation & water quality

Ilangakoon et al., in review, Environmental Research Letters.

Brucker et al., 2025, Nature Comm. Earth & Env.

Skewed distributions: Bayesian finite sample maxima

Development in hotspots 3x higher than national mean

Residential Housing Development (Marshall Fire Area)

Data Source: Zillow Transaction and Assessment Database (ZTRAX)

Year: 1864

Fire risk nearly risk triples nationwide by mid-century

Needs

Near-term forecasts with fully specified uncertainties >> mitigation & resource allocation

Long-term projections >> range of plausible outcomes & counterfactual experimentation >> fully coupled fire-vegetation-climate-human

Al >> (near-)real time

Fire speed & intensity

Seasonality, wind, (coupled) extreme events, ignition, built-environment as fuel