Asynchronous warming and $\delta^{18}O$ evolution of deep Atlantic water masses during the last deglaciation

Jiaxu Zhang^a, Zhengyu Liu^{a,b}, Esther C. Brady^c, Delia W. Oppo^d, Peter U. Clark^e, Alexandra Jahn^f, Shaun A. Marcott^g & Keith Lindsay^c

- ^a Department of Atmospheric and Oceanic Sciences and Center for Climatic Research, University of Wisconsin-Madison
- ^b Climate and Global Dynamics Division, National Center for Atmospheric Research
- ^c Atmospheric Science Program, Department of Geography, Ohio State University
- ^d Department of Geology and Geophysics, Woods Hole Oceanographic Institution
- ^e Department of Geosciences, Oregon State University
- ^f Department of Atmospheric and Oceanic Sciences and the Institute of Arctic and Alpine Research, University of Colorado Boulder
- g Department of Geoscience, University of Wisconsin-Madison

(Zhang et al., 2017, PNAS)

Contact: jiaxu@lanl.gov

The last deglaciation (19-11 ka)

- During the last deglaciation, the warming of the Earth was punctuated by a few abrupt cooling and warming events → AMOC changes
- Heinrich Stadial 1 (HS1, ~17.5 ka) event
- ocean surface: bipolar seesaw effect
- deep ocean: circulation? temperature? water masses?
- Why do we care:
 - ❖ Atmospheric CO₂ changes
 - ❖ Precondition for the Bølling-Allerød warming event
 - ❖ Assessing model fidelity for future prediction

(From Luke Skinner research homepage)

HS1 δ^{18} O phasing: Southern- vs. Northern-source hypotheses

"Southern-source" hypothesis

"Northern-source" hypothesis

δ¹⁸O-enabled POP2 ocean model

- Model is able to resolve AAIW, NADW and AABW water signatures.
 - → Suitable for paleoclimate research purposes

iPOP2-TRACE (22,000 yr) comparing with TRACE21

- TRACE21 (22 ka to present), fully coupled GCM (CCSM3) simulation forced by transient
 - Insolation, greenhouse gases, land ice sheet, and meltwater flux
- Hybrid surface boundary condition
 - Monthly history files
 - Heat flux + strong restoring SST
 - Freshwater flux + weak restoring SSS

Model simulated AMOC intensity

Deep circulation scenario

- During the LGM: strong AABW formation, strong abyssal overturning, basin-wide expansion of AABW.
- Key point #1: During HS1, both NADW and AABW formation decreased, with the former decreasing much more.

Contribution of $\delta^{18}O_w$ and temperature

Atlantic zonal mean $\delta^{18}O_w$ and temperature

What we learn from the model $\delta^{18}O_w$

- 1. Trapped in the upper NA and within the Nordic Seas
 - ← collapsed deep-water formation and the associated Nordic Sea overflows.
- 2. Bottom occupied by AABW, limited penetration.
 - → mild depletion in the whole deep Atlantic.

What we learn from the model temperature

- 1. NH cooling and SH warming: bipolar seesaw
- 2. NH subsurface warming centers at 1500 m, 1000 m deeper than that of the SH.
- 3. Tilted warming.
- 4. Why asymmetric deep warming?

How did the deep North Atlantic warm up?

Passive tracers ($\delta^{18}O_w$) vs. dynamic tracers (temperature)

- **Key point #3:** Warming mechanism: Winter-time deep convection retreat → a mid-depth warming → enhanced vertical diffusive heat flux brings down heat to the deep ocean
- **Key point #4:** Different responses between passive tracers and dynamic tracers.

Summary

Isotope-enabled climate models are useful tools for paleoclimate studies.

- Debate: Southern- vs. northern-sourced deep-water input during the HS1.
- Transient ocean simulation of the past 22,000 years in iPOP2.
- Major findings:
 - a) Reduced AABW production and transport with a reduced AMOC.
 - b) Early warming in the North Atlantic, no warming in the Southern Ocean \rightarrow explains the lead of the northern benthic δ^{18} O.
 - c) Warming mechanism in the North Atlantic: Winter-time deep convection retreat → a mid-depth warming → enhanced vertical diffusive heat flux brings down heat to the deep ocean.
 - d) Different responses of passive tracers and dynamic tracers. We call for caution when inferring water mass changes from δ^{18} O records while assuming uniform changes in deep temperatures.