

- Uncertainty in observational data
- Variation in modeled NPP
- •Differences in how T_s represented
- Models don't incorporate processes important for soil C stabilization/destabilization

Modeling Soil Carbon Pools and Fluxes

Historical and Emerging Views of Soil C Cycling

Soil Temperature

Baker and Baker (2002)

Soil T increase of 0.037-0.049°C yr⁻¹

Temperature Response of Soil C Flux

Temperature Response of Soil C Flux

Soil Warming Stimulates the Nitrogen Cycle Harvard Forest (Barre Woods)

Estimated increase in N availability: 27 kg N ha-1 yr-1

Net Carbon Balance in Response to Soil Warming Harvard Forest (Barre Woods)

Ecosystem Responses to Experimental Warming Global meta-analysis of 85 studies

	Warming			
Total biomass	0 0 0 + (7)			
Aboveground biomass	+ + + + + (32)			
Belowground biomass	$-0 \ 0 \ 0 \ (6)$			
TNPP	+ + + + + (6)			
ANPP	0 0 0 0 (18)			
BNPP	+ + + + + (5)			
Ecosystem respiration	+ + + + + (28)			
Aboveground respiration	+ + + + + (2)			
Soil respiration	+ 0 + + (27)			
Net ecosystem exchange*	0 0 0 0 (26)			
Ecosystem photosynthesis	+ + + + + (24)			

Short-term studies do not anticipate longer term responses

Harvard Forest Soil Warming Study

Heated plots: 5°C above ambient

Increases in Nitrogen Mineralization in Response to Warming Heated vs. Disturbance Control, 1991-2003

Melillo et al. (2002)

Research Needs

Observations

- •Is there differential temperature sensitivity of various SOM compounds?
- •What are the mechanisms underlying the reduced respiratory response following long-term warming?

Modeling

•Better capture temperature responses, including "acclimation" of the soil C flux in response to long-term warming

Modeling Microbes

Temperature Response of Microbial Efficiency

Frey et al. (2013) Nature Climate Change

Soil C Response to varying Microbial Efficiency (DAYCENT)

Soil C Response to varying Microbial Efficiency (Allison et al., 2010)

Soil C Response to varying Microbial Efficiency (Weider et al., 2013)

Divergent model responses of global soil C pools

Research Needs

Observations

- •Is there differential temperature sensitivity of various SOM compounds?
- •What are the mechanisms underlying the reduced respiratory response following long-term warming?
- •What are the key regulators of microbial C use efficiency?

Modeling

- •Better capture temperature responses, including "acclimation" of the soil C flux in response to long-term warming
- Incorporate microbial physiology and other soil biogeochemical mechanisms into ESMs

Coupled Biogeochemical Cycles: Nitrogen Deposition and Soil Carbon Storage

Changes in the woody biomass carbon pool of northern temperate and boreal forests

Terrestrial biomass C sink: 0.68 ± 0.34 Pg

Myneni et al. (2001)

Galloway et al. (2004)

Carbon Stocks in Control and Nitrogen Fertilized Plots

Frey et al. (Nature Geoscience, in prep)

Soil Carbon Stocks

^{*}Forest floor only
**Forest floor plus mineral soil

Carbon Sequestration in Temperate Forests per unit Nitrogen Added

	Study	Nitrogen inputs	Carbon response (kg C kg ⁻¹ N)			
Study location	duration (yr)	$(kg ha^{-1} yr^{-1})$	Trees	Soil	Total	Reference
N. America & Europe (9 sites)	1-3	4-58	25 [‡]	21	46	Nadelhoffer et al. (1999)
Europe (121 plots)	40	2.8	11^{δ}	15	26	de Vries et al. (2006)
Finland, Sweden (15 sites)	14-30	30-200	25	11	26	Hyvönen et al. (2008)
Michigan, USA (4 sites)	10	30	0	14	14	Zak et al. (2008)
Meta-analysis (20 experiments)		28-300		19 [£]		Janssens et al. (2010)
Deciduous stand (MA, USA)	20	50	10	10	20	This study
Deciduous stand (MA, USA)	20	150	5	25	30	This study
Pine stand (MA, USA)	20	50	-10	16	6	This study
Pine stand (MA, USA)	20	150	-7	5	-2	This study

Growing consensus that the soil C pool is as or more responsive to N additions than is NPP

Carbon Inputs to Soil

With N fertilization:

C inputs not dominant mechanism (~10-30%)

Carbon Outputs

With N fertilization:

- Soil respiration consistently lower
- Litter and wood decay suppressed

Organic Matter Chemistry

Pyrolysis-GCMS of forest floor material (hardwood stand)

Frey et al. (Nature Geoscience, in prep)

Research Needs

Observations

- •Is there differential temperature sensitivity of various SOM compounds?
- •What are the mechanisms underlying the reduced respiratory response following long-term warming?
- •What are the key regulators of microbial C use efficiency?
- Need better estimates of global soil C stocks
- Priming

Modeling

- •Better capture temperature responses, including "acclimation" of the soil C flux in response to long-term warming
- Incorporate microbial physiology and other biogeochemical mechanisms into ESMs
- •Incorporation of N feedbacks on soil C storage (N deposition rates predicted to double by 2050)
- Priming

Soil Respiration Components

