

Dynamic Global Vegetation Models

Hourly leaf-level fluxes -> decadal ecosystem-scale consequences.

Fluxes we growth ecompetition, reproduction, death biome shift

OGVMs attempt to predict the future of the entire biosphere.

They are a **necessary** response to the possibility of climate-biosphere feedback.

What criticisms are typically leveled at DGVM's?
What tools can we use to address them?
What problems remain?

Predicted changes in vegetation carbon

Sitch et al. 2008

Large positive feedbacks caused by continental-scale dieback events.

Why dieback : aggregation of plant diversity?

- There are only ~10 kinds of plant.
- Dieback events occur at the physiological thresholds of single plant types.
- Is it realistic that, e.g. all boreal trees, have the same physiological thresholds?

Plant Diversity in DGVMs

Sitch et al. 2003

"There are not enough plant types in climate models" (every living plant ecologist)

Low (functional) diversity causes low resilience to change.

 Problem I: How to better represent plant diversity.

Improved resolution of plant functional types?

if diversity increases, how do we predict which plants will grow where?

How do ecological systems organize the diversity of plant life?

'Gap' Models (e.g. SORTIE, LPJ-GUESS, SEIB, aDGVM)

IndividualBased

3D light
 environment

Simulates:
 recruitment
 competition
 disturbance

Stochastic
 demographics

 Computationally intensive

Inappropriate for climate simulations?

'Area-based' Models

(e.g. CLM, TRIFFID, LPJ, IBIS - models used in IPCC assessments)

- Cell divided into plant type 'tiles'
- I 'average tree' per plant type
- No competition for light
- Expansion via relative growth rates

 Computationally efficient

 Widely used in climate simulations

"Climate models don't represent ecology realistically" (most living plant ecologists)

Two related problems

- I. How to better represent plant diversity.
- 2. How to simulate the organization of increased diversity communities.

Problem I Representation of plant diversity in DGVMs

Plant Traits

Functional properties of plants are called 'traits'

Models define plant properties according to a set of trait values

- wood density, leaf lifespan, photosynthetic capacity,
- root depth, allometry, reflectance, nitrogen content, etc.
- Representing diversity involves increased sampling of trait space.
- This is made easier by 'trade-off's between plant traits.

ALL THEORETICAL PLANTS

ALL THEORETICAL PLANTS

These plants do not exist because they are outside physiological limitations

PLANTS THAT EXIST

resource rich better environments Growth worse better worse Survival We need to understand the trade-offs between plant traits, to properly model the costs of hazardous surviving different environments environments

Our knowledge of trait space is increasing

Global Change Biology

Global Change Biology (2011) 17, 2905-2935, doi: 10.1111/j.1365-2486.2011.02451.x

TRY – a global database of plant traits

J. KATTGE*, S. DÍAZ†, S. LAVOREL‡, I. C. PRENTICE5, P. LEADLEY*, G. BÖNISCH*, E. GARNIER , M. WESTOBYS, P. B. REICH**, ++, I. J. WRIGHTS, J. H. C. CORNELISSEN #, C. VIOLLE ||, S. P. HARRISON§, P. M. VAN BODEGOM th, M. REICHSTEIN*, B. J. ENQUISTSS, N. A. SOUDZILOVSKAIAH, D. D. ACKERLY , M. ANAND O. ATKIN ***, M. BAHN+++, T. R. BAKERttt, D. BALDOCCHISSS, R. BEKKER ***, C. C. BLANCO || , B. BLONDER§§, W. J. BOND****, R. BRADSTOCK + + + + , D. E. BUNKER ± ± ± + , F. CASANOVES§§§§, J. CAVENDER-BARES¶¶¶, J. Q. CHAMBERS ||||, F. S. CHAPIN III*****, J. CHAVE†††††, D. COOMES<u>#</u>##, W. K. CORNWELL<u>#</u>, J. M. CRAINE<u>§§§§</u>5, B. H. DOBRINSS, L. DUARTE 999, W. DURKA M. ESTIARTE #####, W. F. FAGAN§§§§§§, J. FANG¶¶¶¶¶, F. FERNÁNDEZ-MÉNDEZ A. FIDELIS******, B. FINEGAN§§§, O. FLORES†††††††, H. FORD######, D. FRANK*, G. T. FRESCHET[‡], N. M. FYLLAS^{‡‡}, R. V. GALLAGHER[§], W. A. GREEN[§]§§§§§[§], A. G. GUTIERREZ TTTT, T. HICKLER, S. I. HIGGINS J. G. HODGSON + + + + + + + + + + , A. JALILI #######, S. JANSENSSSSSSS, C. A. JOLY 9999999, A. J. KERKHOFF D. KIRKUP K. KITAJIMA++++++++++, M. KLEYER S. KLOTZ, J. M. H. KNOPS§§§§§§§§§, K. KRAMER¶¶¶¶¶¶¶¶¶, I. KÜHN H. KUROKAWA D. LAUGHLIN ..., T. D. LEETTTTTTT, M. LEISHMANS, F. LENS #########, T. LENZS, S. L. LEWIS##, J. LLOYD ##, 555555555555, J. LLUSIA #####, T. MASSAD*, B. E. MEDLYNS, J. MESSIERSS, A. T. MOLES†††††††††††, S. C. MÜLLER K. NADROWSKI HIHHHHH, S. NAEEMSSSSSSSSSSSSS, Ü. NIINEMETS 1111111, S. NÖLLERT*, A. NÜSKE*, R. OGAYA #####, J. OLEKSYN V. G. ONIPCHENKO G. OVERBECK\$\$\$\$\$\$\$\$\$\$\$, W. A. OZINGA 111111, S. PATIÑO 111, S. PAULA J. J. G. PAUSAS J. J. PEÑUELAS HILLIPS H. O. L. PHILLIPS H. A. RAMMIG B. SALGADO-NEGRET§§§§, J. SARDANStittit, S. SHIODERA IIIIIIIIIIII B. SHIPLEY\$\$\$\$\$\$\$\$\$\$\$\$\$\$, A. SIEFERT *******, E. SOSINSKI K. THOMPSONIIIIIIIIIIII, P. THORNTONSSSSSSSSSSSSSS, *Max-Planck-Institute for Biogeochemistry, 07745 Jena, Germany, † Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional PErstants About 18 mers - PATER AND

How might we use all of this data? Alternative approaches to plant trait modeling

How quickly do plant traits vary?

- Model I: Plant traits are static, adaptation happens via change in plant types
- Model 2: Plant traits evolve through time
- Model 3: Plant traits optimize to prevailing environmental conditions

Pre-define trade-offs and allow the environment to select what survives?

I.The 'JeDi' model

The role of climate and plant functional trade-offs in shaping global biome and biodiversity patterns

Björn Reu1.2*, Raphaël Proulx1.3, Kristin Bohn1, James G. Dyke1, Axel Kleidon1, Ryan Pavlick1 and Sebastian Schmidtlein2

Table 2 Description of the 12 plant functional traits used in the Jena diversity model (JeDi).

Model trait	Effect on plant growth	Cost	Benefit
t01	Growth response time to soil moisture conditions	Less time for C assimilation	Tolerance to water shortage
t02	Growth response time to temperature conditions	Less time for C assimilation	Tolerance to frost damage
t03	Allocation to reproduction	Less growth	Increased reproduction
t04	Allocation of assimilates to above-ground growth	C expenditure for maintenance	Increased growth
t05	Allocation of assimilates to below-ground growth	C expenditure for maintenance	Increased growth
t06	Allocation of assimilates to storage	Less growth	Tolerance to C shortage
t07	Relative allocation to above-ground structure versus leaves	Less photosynthetic capacity	Increased access to light
t08	Relative allocation to below-ground structure versus fine roots	Less water uptake	Increased access to water
t09	Senescence response time to net productivity conditions	Less time for C assimilation	Tolerance to climatic variability
t10	Relative senescence of leaves versus roots	Less growth	Tolerance to climatic variability
t11	Initial amount of assimilates ('seed size')	C expenditure for maintenance	Increased seedling survival
t12	Regulation of light-use efficiency	Increased respiration	Increased photosynthetic capacity

All traits are associated to ecophysiological costs and benefits in terms of plant growth and survival.

realized trait space

set of hypothetical trait combinations derived from a Monte Carlo simulation

surviving plant growth strategies

The role of climate and plant functional trade-offs in shaping global biome and biodiversity patterns

Björn Reu^{1,2*}, Raphaël Proulx^{1,3}, Kristin Bohn¹, James G. Dyke¹, Axel Kleidon¹, Ryan Pavlick¹ and Sebastian Schmidtlein²

Next-generation dynamic global vegetation models: learning from community ecology

Simon Scheiter¹, Liam Langan² and Steven I. Higgins²

¹Biodiversität und Klima Forschungszentrum (LOEWE BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany; ²Institut für Physische Geographie, Goethe-Universität Frankfurt am Main, Altenhöferallee 1, D-60438, Frankfurt am Main, Germany

2.The 'aDGVM' model

Death

3. Optimality: an emergent property of evolution?

All existing species are the winners of evolution

Competition selects the fittest species
Sub-optimal plants should be eliminated
What should a 'fit' plant do?

Optimal Function Explains Forest Responses to Global Change

RODERICK C. DEWAR, OSKAR FRANKLIN, ANNIKKI MÄKELÄ, ROSS E. MCMURTRIE, AND HARRY T. VALENTINE

2002. Makel Optimality models identify an apparent goal or objective function F that is maximized with respect to one or more plant functional traits f. The maximization of F is

The maximization of F is usually subjected to one or more physiological or environmental constraints C.

Perhaps partly as a result Optimality models—although recognized and applied in terrestrial ecology for more than 30 years—remain relatively underexploited by the global change research community as components of land-surface models.

Optimal models of plant function

nitrogen limitation on vegetation dynamics

Chonggang Xu¹, Rosie Fisher², Cathy J. Wilson¹, Stan D. Wullschleger³, Michael Cai¹, Nate G. McDowell¹ Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves

Ross E. McMurtrie^{1,3} and Roderick C. Dewar²

Optimal nitrogen allocation controls tree responses to elevated CO₂

Oskar Franklin^{1,2}

¹EASA, Institute for Applied Systems Analysis, 2361 Laxenburg, Austria; ²School of Biological, Earth and Environmental Sciences, University of New South Wiles, Sydney, NSW 2052, Australia

Resource Optimization and Symbiotic Nitrogen Fixation

E. B. Rastetter,^{1*} P. M. Vitousek,² C. Field,³ G. R. Shaver,¹ D. Herbert,¹ and G. I. Ågren⁴

Challenges and Opportunities of the Optimality Approach in Plant Ecology

Annikki Mäkelä, Thomas J. Givnish, Frank Berninger, Thomas N. Buckley, Graham D. Farquhar and Pertti Hari

Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees

J. Lloyd¹, S. Patiño², R. Q. Paiva^{3,*}, G. B. Nardoto⁴, C. A. Quesada^{1,3,5}, A. J. B. Santos^{3,5,†}, T. R. Baker¹, W. A. Brand⁶, I. Hilke⁶, H. Gielmann⁶, M. Raessler⁶, F. J. Luizão³, L. A. Martinelli⁴, and L. M. Mercado⁷

¹Earth and Biosphere Institute, School of Geography, University of Leeds, LS2 9JT, UK ²Grupo de Ecología de Ecosistemas Terrestres Tropicales, Universidad Nacional de Colombia, Sede Amazonia, Instituto Amazónico de Investigaciones-Imani, km. 2, vía Tarapacá, Leticia, Amazonas, Colombia ³Institito National de Pesquisas Amazônicas, Manaus, Brazil

⁴Centro de Energia Nuclear na Agricultura, Av. Centenário 303, 13416-000, Piracicaba SP. Berro

Optimal co-allocation of carbon and nitrogen in a forest stand at steady state

Annikki Mäkelä¹, Harry T. Valentine² and Heljä-Sisko Helmisaari³

Department of Forest Ecology, PO Box 27, 00014 University of Helsinki, Finland; ²USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA; ³Finnish Forest Research Institute, Vantaa Research Centre, PO Box 18, 01301 Vantaa, Finland

Summary

- Better representation of plant diversity is desirable and possible within vegetation models, if we incorporate sufficient knowledge of plant traits.
- Complexity results from (at least) two issues
 - I. Incomplete knowledge of the costs and benefits of different plant strategies
 - 2. Poor understanding of the flexibility of plant traits through time.

Problem II Ecosystem organization in DGVMs

Ecosystem Demography Model (ED) Moorcroft, Hurtt and Pacala. 2001

Landscape divided into successional age classes

Ecosystem Demography Model (ED) Moorcroft, Hurtt and Pacala. 2001

Landscape divided into successional age classes

Vegetation divided into height and plant type classes

Merits of ED approach

 Computationally plausible simulations of ecological dynamics

Represents vertical competition for light:

Representation of multiple niches & the possibility of plant co-existence

Simulation of recovery from human and natural disturbance events.

What issues remain unresolved?

Modeling competition for light resources

Competition for light ~ competition for space
Some trees get in the canopy, some stay in the understory

Modeling competition for light resources

Some trees get into the canopy, but which ones?How tall do you have to grow?

In a real forest, being slightly taller doesn't **necessarily** mean having more light. Some trees are lucky...

Perfect deterministic world = mono-dominance

Imperfect stochastic world = co-existence

Competitive Exclusion Parameter

 \odot f_{canopy} α h.C_e

C_e = how do tall trees monopolise light resources?
 C_e = Stochasticity vs. Determinism of competition

Ecosystem level positive feedback

Ecosystem level positive feedback

Example plant community

One fundamental growth risk trade-off involves the storage vs deployment of carbon for growth

- Less C storage = more growth
- Less C storage = less resources during drought

System exposed to increasing CO₂ and decreasing rainfall

Survival

Fisher et al. New Phytologist 2010

Community Composition

Community Assembly in the Jena Diversity (JeDi) model

Diversity is a function of resource competition strength, seed competition strength & disturbance frequency

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Bohn et al. 2011

Summary

- Community assembly primarily happens at spatial scales not represented by a land surface model.
- There are multiple sources of heterogeneity that are unrepresented.
- The emergent properties of the system are functions of poorly constrained parameters.
- This is partially analogous to cloud parameterizations in ESM's