Role of the AMOC in ocean heat storage and transient climate change # Projections of future global warming Fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5) ## Learning from climate models - Consider single forcing simulations (e.g., CO₂ only) - reveals the distinct climate effects of CO₂ vs other forcing agents # Learning from climate models - Consider single forcing simulations (e.g., CO₂ only) - reveals the distinct climate effects of CO₂ vs other forcing agents - Consider abrupt forcing simulations (e.g., 2×CO₂, 4×CO₂) - reveals the fundamental timescales of climate response # Learning from climate models - Consider single forcing simulations (e.g., CO₂ only) - reveals the distinct climate effects of CO₂ vs other forcing agents - Consider abrupt forcing simulations (e.g., 2×CO₂, 4×CO₂) - reveals the fundamental timescales of climate response Linearization of global top-ofatmosphere (TOA) energy budget - Temperature anomaly T has units of K or °C - H and R have units of W/m² - 'Global radiative feedback' λ is negative (stabilizing) and has units of Wm⁻²K⁻¹ Linearization of global top-ofatmosphere (TOA) energy budget global effective heat capacity $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ • Transient warming: Rate of global heat content change Linearization of global top-ofatmosphere (TOA) energy budget global effective $H = \lambda T + R$ global TOA global TOA radiation flux radiative radiative anomaly response forcing • Transient warming: Example: Climate response without a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R$$ Example: Climate response without a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R$$ - One timescale - Adjustment of mixed layer (~decade) $$\tau = -c_{ml}/\lambda$$ Example: Climate response with a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ Example: Climate response with a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ - Two timescales - Adjustment of mixed layer (~years) $$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$ Adjustment of deep ocean (~centuries) $$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$ Example: Climate response with a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ - Two timescales - Adjustment of mixed layer (~years) $$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$ Adjustment of deep ocean (~centuries) $$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$ Gregory (2000), Held et al (2010) Example: Climate response with a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ - Two timescales - Adjustment of mixed layer (~years) $$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$ Adjustment of deep ocean (~centuries) $$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$ CMIP5 sea-surface temperature response to CO₂ quadrupling Gregory (2000), Held et al (2010) ocean Example: Climate response with a deep ocean $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ - Fit 2-layer model to surface response of CMIP5 models - c_{ml} = effective depth of 100 m - c_{deep} ranges from 590 to 1660 m - β ranges from 1.2 to 2.1 Wm⁻²K⁻¹ - λ ranges from -2.5 to -1.4 Wm⁻²K⁻¹ - R ranges from 8.8 to 11.0 Wm⁻² Gregory (2000), Held et al (2010) Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling D_{80%} is a metric for the depth of ocean heat storage, defined as the depth above which 80% of global heat content anomaly resides Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling - $D_{80\%}$ is a metric for the depth of ocean heat storage, defined as the depth above which 80% of global heat content anomaly resides - $D_{80\%}$ ranges from 780 m to 1800 m, similar to effective deep ocean depth (c_{deep}) in 2-layer model $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ \bullet Depth of ocean heat storage in CMIP5 models, 100 years after a CO_2 quadrupling - D_{AMOC} is a metric for the depth of the AMOC, defined as the average depth of 5 and 10 Sv streamlines over the simulation - D_{AMOC} ranges from 500 m to 1800 m, similar to $D_{80\%}$ Strength of AMOC sets efficiency of heat transport between upper and lower layers $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ #### Role of the ocean in SST response Sea-surface temperature response to CO₂ quadrupling $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ #### Role of the ocean in SST response Sea-surface temperature response to CO₂ quadrupling Sea-surface temperature response in 2-layer model, with ensemble mean atmospheric properties (λ and R) $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ # Role of feedbacks and forcing in SST response Sea-surface temperature response to CO₂ quadrupling Sea-surface temperature response in 2-layer model, with ensemble mean ocean properties (c_{deep} and β) $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ # Role of AMOC in transient global warming Depth of heat storage is strongly influenced by the depth of AMOC In those models with a deeper and stronger AMOC, a smaller portion of the heat anomaly remains in the upper ocean, delaying surface warming Variations in climate feedbacks is the other large source of inter-model spread in transient surface warming Y Kostov, KC Armour and J Marshall (2014), Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change, Geophys. Res. Lett., 41, doi: 10.1002/2013GL058998. # Bonus slides $$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$ $$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$ $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ Year after CO₂ doubling $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ Global surface temperature response to CO₂ doubling $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ Global surface temperature response to CO₂ doubling $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ Global surface temperature response to CO₂ doubling $$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$ Global surface temperature response to CO₂ doubling 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling 16 fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5) 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling 16 fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5) 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling sensitivity" 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling $$H = \lambda_{eff}(t)T + R$$ \longrightarrow $T_{eff}(t) = -\frac{R_{2\times}}{\lambda_{eff}(t)}$ "Effective climate sensitivity" 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling sensitivity" 16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling $$H = \lambda_{eff}(t)T + R$$ \longrightarrow $T_{eff}(t) = -\frac{R_{2\times}}{\lambda_{eff}(t)}$ "Effective climate sensitivity" #### Are we underestimating long-term global warming? Effective climate sensitivity at the time of CO₂ doubling (year 70) in transient 1%/yr CO₂ ramping simulations Apparent climate sensitivity (estimated long-term warming) before the emergence of SH polar amplification Equilibrium climate sensitivity estimated from abrupt 4×CO₂ simulations Actual (equilibrium) climate sensitivity #### Are we underestimating long-term global warming? Effective climate sensitivity at the time of CO₂ doubling (year 70) in transient 1%/yr CO₂ ramping simulations Equilibrium climate sensitivity estimated from abrupt 4×CO₂ simulations Ratio of equilibrium to effective climate sensitivity: # Active vs passive role of ocean heat uptake