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Figure 12.5: Time series of global annual mean surface air temperature anomalies (relative to 1986–2005) from CMIP5 
concentration-driven experiments. Projections are shown for each RCP for the multi model mean (solid lines) and the 

5–95% range (±1.64 standard deviation) across the distribution of individual models (shading). Discontinuities at 2100 

are due to different numbers of models performing the extension runs beyond the 21st century and have no physical 
meaning. Only one ensemble member is used from each model and numbers in the figure indicate the number of 

different models contributing to the different time periods. No ranges are given for the RCP6.0 projections beyond 2100 

as only two models are available. 
  

Fully-coupled General Circulation Models (GCMs) 
from the Coupled Model Intercomparison Project, 
phase 5 (CMIP5) 



Learning from climate models 
	
  
§  Consider single forcing simulations (e.g., CO2 only)  

§  reveals the distinct climate effects of CO2 vs other forcing agents 
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Learning from climate models 
	
  
§  Consider single forcing simulations (e.g., CO2 only)  

§  reveals the distinct climate effects of CO2 vs other forcing agents 

§  Consider abrupt forcing simulations (e.g., 2×CO2 , 4×CO2) 
§  reveals the fundamental timescales of climate response 
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Learning from climate models 
	
  
§  Consider single forcing simulations (e.g., CO2 only)  

§  reveals the distinct climate effects of CO2 vs other forcing agents 

§  Consider abrupt forcing simulations (e.g., 2×CO2 , 4×CO2)  
§  reveals the fundamental timescales of climate response 

Te
m

p
e

ra
tu

re
 c

h
a

n
g

e
  T

 (
°C

) 

Year 

C
O

2 
ra

d
ia

tiv
e

 fo
rc

in
g

 (
W

/m
2 )

 

Year 

Temperature response Radiative forcing 

CMIP5 GCMs 

abrupt 4×CO2 increase 



Global climate response to forcing 

global TOA 
radiative 
response 

global TOA 
radiative 
forcing 

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 9

T = �eff (t)(R�H) (34)

T = �RCO2 (35)

T = �(RCO2 �H) (36)

T = �RCO2 � �lowHlow � �highHhigh (37)

T = �CO2R� �HH (38)

T = �R (39)

T = �(R�H) (40)

T = �R� �lowHlow � �highHhigh (41)

H = �T +R +O(T 2) (42)

H = ceff
dT

dt
= �T +R (43)

D R A F T January 20, 2014, 5:42pm D R A F T

global TOA  
radiation flux 

anomaly 

	
  
§  Temperature anomaly T has units of K or °C 

§  H and R have units of W/m2 

§  ‘Global radiative feedback’ λ is negative 
(stabilizing) and has units of Wm-2K-1 

	
  
§  Linearization of global top-of-
atmosphere (TOA) energy budget 
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§  Transient warming:  
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§  Linearization of global top-of-
atmosphere (TOA) energy budget 
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Box 3.1, Figure 1: Plot of energy accumulation in ZJ (1 ZJ = 10

21

 J) within distinct components of Earth’s climate 

system relative to 1971 and from 1971–2010 unless otherwise indicated. See text for data sources. Ocean warming (heat 

content change) dominates, with the upper ocean (light blue, above 700 m) contributing more than the deep ocean (dark 

blue, below 700 m; including below 2000 m estimates starting from 1992). Ice melt (light grey; for glaciers and ice 

caps, Greenland and Antarctic ice sheet estimates starting from 1992, and Arctic sea ice estimate from 1979–2008); 

continental (land) warming (orange); and atmospheric warming (purple; estimate starting from 1979) make smaller 

contributions. Uncertainty in the ocean estimate also dominates the total uncertainty (dot-dashed lines about the error 

from all five components at 90% confidence intervals). 
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§  Linearization of global top-of-
atmosphere (TOA) energy budget 

(IPCC AR5) 
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§  Example: Climate response without a deep ocean 
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§  One timescale 

§  Adjustment of mixed layer (~decade) 
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§  Example: Climate response with a deep ocean 
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§  Example: Climate response with a deep ocean 
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§  Two timescales 

§  Adjustment of mixed layer (~years) 

 

§  Adjustment of deep ocean (~centuries) 
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§  Two timescales 

§  Adjustment of mixed layer (~years) 
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§  Example: Climate response with a deep ocean 
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§  Two timescales 

§  Adjustment of mixed layer (~years) 

 

§  Adjustment of deep ocean (~centuries) 
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§  Example: Climate response with a deep ocean 
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§  Fit 2-layer model to surface response of 
CMIP5 models 

§  cml = effective depth of 100 m 

§  cdeep ranges from 590 to 1660 m 

§  β ranges from 1.2 to 2.1 Wm-2K-1 

§  λ ranges from -2.5 to -1.4 Wm-2K-1 

§  R ranges from 8.8 to 11.0 Wm-2 
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§  Depth of ocean heat storage in CMIP5 models, 100 years after a CO2 
quadrupling 
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§  D80% is a metric for the depth of 
ocean heat storage, defined as the 
depth above which 80% of global heat 
content anomaly resides 
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§  D80% is a metric for the depth of 
ocean heat storage, defined as the 
depth above which 80% of global heat 
content anomaly resides 

§  D80% ranges from 780 m to 1800 m, 
similar to effective deep ocean depth 
(cdeep) in 2-layer model 
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§  Depth of ocean heat storage in CMIP5 models, 100 years after a CO2 
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§  Depth of ocean heat storage in CMIP5 models, 100 years after a CO2 
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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§  DAMOC is a metric for the depth of the AMOC, 
defined as the average depth of 5 and 10 Sv 
streamlines over the simulation 

§  DAMOC ranges from 500 m to 1800 m, similar to D80%
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 2. Zonal mean potential temperature anomaly in the World Ocean; 30 year average centered 100 years after
4×CO2. The magenta dash-dotted line marks the average depth above which 80% of the heat anomaly is contained.
Overlayed contours mark the upper overturning cell of the AMOC (Sv) between 35◦S and the Arctic Circle (temporal
average over the 150 year 4×CO2 simulation; contour lines are 5 Sv apart, with an outermost contour at 0 Sv). The green
dashed line denotes the uniform metric for the downward extent, DAMOC, of the upper overturning cell. CMIP5 mod-
els: (a) ACCESS1-0, (b) CCSM4, (c) CNRM-CM5, (d) GFDL-ESM2M, (e) GFDL-CM3, (f ) MPI-ESM-LR, (g) MRI-CGCM3, and
(h) NorESM1-M.

ever increasing depth. A century after CO2 quadrupling, warming can be seen at depths of several kilome-
ters (Figure 2), but there exists a substantial intermodel spread. Indeed, Figure 1b shows that a large fraction
of global ocean warming occurs below 1 km in some models (e.g., about 40% for NorESM1-M), while rela-
tively little warming occurs below this depth in others (e.g., about 10% for CNRM-CM5). We define a metric
for heat penetration, D80%, as the depth above which 80% of the total global heat content anomaly is con-
tained after one century. D80% varies considerably across models (Figure 2, horizontal magenta lines), with
NorESM1-M (D80% = 1.8 km) and CNRM-CM5 (D80% = 0.8 km) as end members.

Various heat transport processes contribute to the distribution of heat storage with depth [e.g., Gregory,
2000]. Here we propose that the intermodel spread can be largely understood in terms of the different rep-
resentations of AMOC among the GCMs. The overturning circulation affects vertical heat storage via two
main mechanisms: ventilation of the ocean to depth of several km; and redistribution of the background
heat content as the AMOC itself changes in response to surface wind and buoyancy forcing [e.g., Xie and
Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013] (see supporting information).

To assess the overall impact of the AMOC, we consider its temporal average over the course of the 4 × CO2

simulations. The volume overturning stream functions in the Atlantic-Arctic Basin of each model are shown
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Figure 1. (a) Area-averaged SST anomaly in CMIP5 4 × CO2 simulations ; (b) Vertical distribution of the ocean heat
anomaly in CMIP5 models, averaged over the World Ocean, 100 years after the CO2 quadrupling; (c) SST response
under model-specific feedback and forcing (!o , o), but ensemble-mean ocean properties (q, h2, "), as simulated by the
two-layer ocean energy balance model (EBM) (see section 3); (d) SST response under model-specific ocean properties
(q, h2, ") but ensemble-mean feedback and forcing (!o , o), as simulated by the two-layer ocean EBM (see section 3). The
eight CMIP5 models included here are those for which sufficient output was accessible at the time of our analysis (ocean
temperature, sea surface heat flux, and AMOC data).

To assess the influence of the effective ocean heat capacity on the surface climate response to forcing, we
introduce a two-layer energy balance model, similar in form to that developed in Gregory [2000] and Held
et al. [2010]. Such models have successfully reproduced the global temperature response in a wide range
of GCMs [e.g., Gregory, 2000; Held et al., 2010; Li et al., 2012; Geoffroy et al., 2012, 2013a, 2013b]. We similarly
fit our two-layer model to global SSTs from 4×CO2 simulations, but we extend our analysis to interpret
the model parameters in terms of physical processes. In particular, we find that the calibrated ocean heat
capacity and rate of heat sequestration into the ocean interior are strongly correlated with the depth of heat
penetration within the coupled GCMs, which, in turn, appears to be regulated by the vertical extent and
strength of the AMOC cell. Finally, we use the two-layer ocean model to quantify the relative contributions
of effective ocean heat capacity and climate feedbacks to the intermodel spread in SST response to forcing.

2. AMOC and Ocean Heat Storage

In order to evaluate the ocean’s role in transient climate change, we analyze the relationship between
warming at the sea surface and the distribution of stored heat with depth (see Figure S1 in the support-
ing information for the relationship between warming over land and ocean domains). We compute the
area-averaged SST (≡ T1) and sea surface heat flux (≡ No) anomalies over the global ocean by subtracting
the linear trend of the preindustrial control from each corresponding 4×CO2 simulation. This eliminates
unforced drift without adding noise [Andrews et al., 2012]. Figure 1a shows the notable spread in transient
SST responses across the ensemble of GCMs.

The rate of net ocean heat uptake No is defined as positive into the ocean and includes net shortwave and
longwave radiation, as well as latent and sensible heat fluxes at the air-sea interface. Following CO2 quadru-
pling, No is initially on the order of 10 W m−2 (Table S1) and decreases as the climate evolves toward a new
equilibrium. The heat anomaly is initially concentrated in the ocean mixed layer but, over time, penetrates to
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Figure S2. Comparison between the annual average global SST response in the original CMIP5
abrupt 4⇥CO2 simulations and the SST responses reproduced by the calibrated 2-layer model.
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