Role of the AMOC in ocean heat storage and transient climate change

Projections of future global warming

Fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5)

Learning from climate models

- Consider single forcing simulations (e.g., CO₂ only)
 - reveals the distinct climate effects of CO₂ vs other forcing agents

Learning from climate models

- Consider single forcing simulations (e.g., CO₂ only)
 - reveals the distinct climate effects of CO₂ vs other forcing agents
- Consider abrupt forcing simulations (e.g., 2×CO₂, 4×CO₂)
 - reveals the fundamental timescales of climate response

Learning from climate models

- Consider single forcing simulations (e.g., CO₂ only)
 - reveals the distinct climate effects of CO₂ vs other forcing agents
- Consider abrupt forcing simulations (e.g., 2×CO₂, 4×CO₂)
 - reveals the fundamental timescales of climate response

 Linearization of global top-ofatmosphere (TOA) energy budget

- Temperature anomaly T has units of K or °C
- H and R have units of W/m²
- 'Global radiative feedback' λ is negative (stabilizing) and has units of Wm⁻²K⁻¹

 Linearization of global top-ofatmosphere (TOA) energy budget

global effective heat capacity

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

• Transient warming:

Rate of global heat content change

 Linearization of global top-ofatmosphere (TOA) energy budget

global effective

 $H = \lambda T + R$ global TOA global TOA radiation flux radiative radiative anomaly response forcing

• Transient warming:

Example: Climate response without a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R$$

Example: Climate response without a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R$$

- One timescale
 - Adjustment of mixed layer (~decade)

$$\tau = -c_{ml}/\lambda$$

Example: Climate response with a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

Example: Climate response with a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

- Two timescales
 - Adjustment of mixed layer (~years)

$$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$

Adjustment of deep ocean (~centuries)

$$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$

Example: Climate response with a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

- Two timescales
 - Adjustment of mixed layer (~years)

$$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$

Adjustment of deep ocean (~centuries)

$$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$

Gregory (2000), Held et al (2010)

Example: Climate response with a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

- Two timescales
 - Adjustment of mixed layer (~years)

$$au_{fast} pprox rac{c_{ml}}{-\lambda + eta}$$

Adjustment of deep ocean (~centuries)

$$\tau_{slow} \approx \frac{c_{deep}}{\beta} \frac{\lambda - \beta}{\lambda}$$

CMIP5 sea-surface temperature response to CO₂ quadrupling

Gregory (2000), Held et al (2010)

ocean

Example: Climate response with a deep ocean

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

- Fit 2-layer model to surface response of CMIP5 models
 - c_{ml} = effective depth of 100 m
 - c_{deep} ranges from 590 to 1660 m
 - β ranges from 1.2 to 2.1 Wm⁻²K⁻¹
 - λ ranges from -2.5 to -1.4 Wm⁻²K⁻¹
 - R ranges from 8.8 to 11.0 Wm⁻²

Gregory (2000), Held et al (2010)

 Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling

 Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling

 D_{80%} is a metric for the depth of ocean heat storage, defined as the depth above which 80% of global heat content anomaly resides

 Depth of ocean heat storage in CMIP5 models, 100 years after a CO₂ quadrupling

- $D_{80\%}$ is a metric for the depth of ocean heat storage, defined as the depth above which 80% of global heat content anomaly resides
- $D_{80\%}$ ranges from 780 m to 1800 m, similar to effective deep ocean depth (c_{deep}) in 2-layer model

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$
$$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

 \bullet Depth of ocean heat storage in CMIP5 models, 100 years after a CO_2 quadrupling

- D_{AMOC} is a metric for the depth of the AMOC, defined as the average depth of 5 and 10 Sv streamlines over the simulation
- D_{AMOC} ranges from 500 m to 1800 m, similar to $D_{80\%}$

Strength of AMOC sets efficiency of heat transport between upper and lower layers

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$
$$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

Role of the ocean in SST response

Sea-surface temperature response to CO₂ quadrupling

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$
$$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

Role of the ocean in SST response

Sea-surface temperature response to CO₂ quadrupling

Sea-surface temperature response in 2-layer model, with ensemble mean atmospheric properties (λ and R)

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$
$$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

Role of feedbacks and forcing in SST response

Sea-surface temperature response to CO₂ quadrupling

Sea-surface temperature response in 2-layer model, with ensemble mean ocean properties (c_{deep} and β)

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$
$$c_{deep}\frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

Role of AMOC in transient global warming

 Depth of heat storage is strongly influenced by the depth of AMOC

 In those models with a deeper and stronger AMOC, a smaller portion of the heat anomaly remains in the upper ocean, delaying surface warming

 Variations in climate feedbacks is the other large source of inter-model spread in transient surface warming

Y Kostov, KC Armour and J Marshall (2014), Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change, Geophys. Res. Lett., 41, doi: 10.1002/2013GL058998.

Bonus slides

$$c_{ml}\frac{dT}{dt} = \lambda T + R + \beta (T_{deep} - T)$$

$$c_{deep} \frac{dT_{deep}}{dt} = \beta (T - T_{deep})$$

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

Year after CO₂ doubling

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

Global surface temperature response to CO₂ doubling

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

Global surface temperature response to CO₂ doubling

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

Global surface temperature response to CO₂ doubling

$$H = c_{eff} \frac{dT}{dt} = \lambda T + R$$

Global surface temperature response to CO₂ doubling

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

16 fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5)

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

16 fully-coupled General Circulation Models (GCMs) from the Coupled Model Intercomparison Project, phase 5 (CMIP5)

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

sensitivity"

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

$$H = \lambda_{eff}(t)T + R$$
 \longrightarrow $T_{eff}(t) = -\frac{R_{2\times}}{\lambda_{eff}(t)}$

"Effective climate sensitivity"

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

sensitivity"

16 CMIP5 fully-coupled GCMs forced by abrupt CO₂ quadrupling

$$H = \lambda_{eff}(t)T + R$$
 \longrightarrow $T_{eff}(t) = -\frac{R_{2\times}}{\lambda_{eff}(t)}$

"Effective climate sensitivity"

Are we underestimating long-term global warming?

Effective climate sensitivity at the time of CO₂ doubling (year 70) in transient 1%/yr CO₂ ramping simulations

Apparent climate sensitivity (estimated long-term warming) before the emergence of SH polar amplification

Equilibrium climate sensitivity estimated from abrupt 4×CO₂ simulations

Actual (equilibrium) climate sensitivity

Are we underestimating long-term global warming?

Effective climate sensitivity at the time of CO₂ doubling (year 70) in transient 1%/yr CO₂ ramping simulations

Equilibrium climate sensitivity estimated from abrupt 4×CO₂ simulations

Ratio of equilibrium to effective climate sensitivity:

Active vs passive role of ocean heat uptake

