Role of the AMOC in ocean heat
stforage and transient climate change
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Projections of future global warming

4-"--.12 Ill\lilllllilllliiflll\lIII\|IIIIIIIII
O )

o - i = historical 12

8_’10—_ RCP2.6 17

c 1 ——nRcras 12

_(C“: 8_— . RCP.0 39

5 . RCP8.5

-

3 U

© 6 -

j -

Q i

g- 1

o 4 -

—

8 il

(U —

= 2_ 42 models

= il

7 il

g 0 (IPCC AR5)
No)

o

<D_2 III\|IIIIIIIIIIIIII'FI\I'III\'IIIIIIIIIIIII

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

Year

Fully-coupled General Circulation Models (GCMs)
from the Coupled Model Intercomparison Project,
phase 5 (CMIP))



Learning from climate models

= Consider single forcing simulations (e.g., CO, only)
= reveals the distinct climate effects of CO, vs other forcing agents
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Global climate response 1o forcing

= Linearization of global top-of- — |
atmosphere (TOA) energy budget H AT T it

global TOA global TOA global TOA
radiafion flux radiative  radiative
anomaly response forcing

= Temperature anomaly T has units of K or °C
= H and R have units of W/m?2

= ‘Global radiative feedback’ A is negative
(stabilizing) and has units of Wm-2K-!
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Global climate response to forcing

= Linearization of global top-of- H = \T + R |

atmosphere (TOA) energy budget
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Global climate response to forcing

= Example: Climate response without a deep ocean

radiation
balance

dT
mi— = A1+ R
Cldt +

mixed layer



Global climate response 1o forcing

= Example: Climate response without a deep ocean
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Global climate response to forcing

= Example: Climate response with a deep ocean

radiation
balance

dl’
le% = A"+ R+ B(Tdeep — T)

AT e Y
p .
Cd@GPT — B(T — Tdeep) mixed layer

Gregory (2000), Held et al (2010)



Global climate response to forcing

= Example: Climate response with a deep ocean

dl’
le% = A"+ R+ B(Tdeep — T)

AT e N\
Cdeep ——=F = B(T — Tdeep) mixed layer
dt

radiation
balance

= Two fimescales
= Adjustment of mixed layer (~years)
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= Adjustment of deep ocean (~centuries)

-~ Cdeep A — 5

Tslow ~ 6 \ Gregory (2000), Held et al (2010)




Global climate response 1o forcing

= Example: Climate response with a deep ocean

drl’
Cmi—7 = AN+ R+ B(Tdeep — T)
dt Sea-surface temperature
response to CO, doubling
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Global climate response 1o forcing

= Example: Climate response with a deep ocean

dl’
le% = A"+ R+ B(Tdeep — T)

CMIP5 sea-surface temperature
response to CO, quadrupling
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Global climate response 1o forcing

= Example: Climate response with a deep ocean

dl’
le% = A"+ R+ B(Tdeep — T)

CMIP5 sea-surface temperature
response to CO, quadrupling

deeep

Cdeep o — B(T — Tdeep)

= Fit 2-layer model to surface response of
CMIP5 models
= C,, = effective depth of 100 m

SST anomaly (°C)
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= franges from 1.2 to 2.1 Wm-2K-! _
= Aranges from -2.5 to -1.4 Wm 2K | Stmos
= R ranges from 8.8 to 11.0 Wm-2

Gregory (2000), Held et al (2010)



Depth (m)

What sets the effective ocean heat capacitye

= Depth of ocean heat storage in CMIP5 models, 100 years after a CO,
quadrupling
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What sets the effective ocean heat capacitye

= Depth of ocean heat storage in CMIP5 models, 100 years after a CO,
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Depth (m)

What sets the effective ocean heat capacitye

= Depth of ocean heat storage in CMIP5 models, 100 years after a CO,

quadrupling
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Cumulative fraction of global
heat content anomaly (%)

= Dgo is @ metric for the depth of
ocean heat storage, defined as the
depth above which 80% of global heat
content anomaly resides

= Dgye ranges from 780 m to 1800 m,
similar to effective deep ocean depth
(Cgeep) IN 2-layer model

dT
le% = \T + R + B(Tdeep — T)

dT gee
Cdeep# — 5(T — Tdeep)



Depth (m)

What sets the effective ocean heat capacitye

= Depth of ocean heat storage in CMIP5 models, 100 years after a CO,
quadrupling
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What sets the effective ocean heat capacitye

CNRM-CM5 Dgos NOrESM1-M
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What sets the effective ocean heat capacitye

CNRM-CM5 Dagos NOrESM1-M
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" D ,moc is @ metric for the depth of the AMOC,
defined as the average depth of 5 and 10 Sv
streamlines over the simulation

* D moc ranges from 500 m to 1800 m, similar to Dgg,



What sets the effective ocean heat capacitye
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What sets the effective ocean heat capacitye

Strength of AMOC sets efficiency
of heat transport between upper

Depth of AMOC sets effective
depth of 2-layer model - and lower layers
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SST anomaly (°C)

Role of the ocean in SST response

Sea-surface temperature
response to CO, quadrupling
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SST anomaly (°C)

Role of the ocean in SST response

Sea-surface temperature
response to CO, quadrupling
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Role of feedbacks and forcing in SST response

Sea-surface temperature response in
2-layer model, with ensemble mean
ocean properties (Cyeep aNd B)

Sea-surface temperature
response to CO, quadrupling
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Role of AMOC In transient global warming

= Depth of heat storage is strongly
influenced by the depth of AMOC

= In those models with a deeper and
stronger AMOC, a smaller portion of the
heat anomaly remains in the upper ocean,

0 20 40 60 80 100

deloymg surface wdarming Cumulative fraction of global heat
content anomaly in CMIP5 models

= Variations in climate feedbacks is the other
large source of inter-model spread in
transient surface warming

SST anomaly (°C)

Y Kostov, KC Armour and J Marshall (2014), Impact of the Atlantic
meridional overturning circulation on ocean heat storage and
transient climate change, Geophys. Res. Lett., 41, doi: 0 ‘

10.1002/2013GL058998. 0 50 100 150
Year after CO, quadrupling




Bonus slides



What sets the effective ocean heat capacitye
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Temperature change T (°C)

Global climate response to forcing
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Temperature change T (°C)

Global climate response to forcing
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Temperature change T (°C)

Global climate response 1o forcing
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Temperature change T (°C)

Global climate response 1o forcing
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Temperature change T (°C)

Global climate response 1o forcing
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Temperature change T (°C)

Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling
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Temperature change T (°C)

Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling

Global surface temperature
response to CO, quadrupling
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Temperature change T (°C)

Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling

Global surface temperature
response to CO, quadrupling
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Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling

Global surface temperature Global TOA radiation flux vs
response to CO, quadrupling - global surface temperature
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Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling
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Climate response to an abrupt CO, change

= 16 CMIPS5 fully-coupled GCMs forced by abrupt CO, quadrupling
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Are we underestimating long-term global warminge

Effective climate sensitivity at the time
of CO, doubling (year 70) in tfransient
1%/yr CO, ramping simulations

Equilibrium climate sensitivity estimated
from abrupt 4xCO, simulations
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Are we underestimating long-term global warminge

Effective climate sensitivity at the time
of CO, doubling (year 70) in tfransient
1%/yr CO, ramping simulations

Equilibrium climate sensitivity estimated
from abrupt 4xCO, simulations
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Depth (m)

Depth (M)

Active vs passive role of ocean heat uptake

Ocean-only MITgcm ocean temperature change over 100 years
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