Temporal and Meridional Changes of MOC in the South Atlantic from Satellite Measurements

Shenfu Dong CIMAS, University of Miami, and NOAA/AOML

Coauthors: Gustavo Goni, Francis Bringas (NOAA/AOML)

Research funded by NASA, NOAA CPO and AOML

US AMOC Science Team Meeting Seattle, WA, September 9-11, 2014

Goal

To test the ability of the altimeter SSH measurements (combined with *in situ* observations) in estimating the MOC/MHT in the South Atlantic.

To investigate spatial (latitudinal) and temporal changes of the MOC/MHT in the South Atlantic.

Meridional Heat Transport in the Atlantic Ocean

Methodology

- ♦ Altimetry SSH observations as the main data set
 - T(z) derived from satellite altimetry, T(0) by satellite-derived SSTs
 - \blacksquare S(z) derived from T(z)-S(z) look up tables built using profiles from all available CTD and Argo observations
- ♦ XBT observations as the main complimentary data set (evaluation of the methodology).
- ♦ NCEP Winds are used to compute the Ekman transport.

Sea Height Anomalies and Isotherm Depths

Altimetry-derived temperature profiles

Difference between Altimetry-derived and XBT-derived temperature sections (34.5°S), February 2005

Altimetry-derived MOC/MHT at 34.5°S Altimetry-XBT comparison

	MOC (Sv)	MHT (PW)
XBT AX18	19.6±2.6	0.48±0.20
Altimetry	19.2±2.8	0.51±0.22

Altimetry-derived MOC/MHT at 34.5°S Altimetry-XBT comparison

rms dif = 1.8Sv

rms dif = **0.13PW**

Altimetry-derived MOC

- Mean MOC increases slightly southward from 20°S to 30°S, but not significant.
- Maximum variability at 34.5°S, twice as large as that at 20°S.
- Strong seasonal variations at 34.5°S and 30°S.

Altimetry-derived MOC: Seasonal Variability

- ♦ The amplitude of seasonal cycle in the AMOC decreases toward the north.
- ♦ Both the Geostrophic and Ekman components contribute equally to the AMOC seasonal variation.

Altimetry-derived MOC: Interannual Variability

- ❖ Interannual variations in the AMOC are dominated by geostrophic component before 2006. Ekman component plays a larger role since 2006 (except 25°S).
- ♦ High correlations of the AMOC between 20°S-30°S.

$$20^{\circ}S$$
 \longrightarrow $25^{\circ}S$ \longrightarrow $30^{\circ}S$ \longrightarrow $34.5^{\circ}S$ $=$ 0.66 0.71 0.26

Comparison with An Ocean Model Results

Good comparison between estimates from Altimeter and Model results at 20°S, 25°S, and 30°S, but not at 34.5°S.

Model: Global ocean-sea ice coupled model of the NCAR CESM1 forced with the 20th century Reanalysis surface forcing (S. Lee).

Conclusions

- → RMS difference between XBT and altimetry estimates are smaller than year-to-year changes in MOC.
- ♦ Satellite altimetry allows to obtain an extended time series of MOC to 1993.
- ♦ MOC variability decreases toward north from 34.5°S to 20°S.
- ♦ Altimetry-based MOC estimates show well comparison with results from an ocean-sea ice coupled model between 20°S and 30°S.

Model-data Comparison: Temperature at 1000 m depth And vertical density gradient

Model-data Comparison: Zonally-averaged meridional velocity at 34°S

