- The tropical Atlantic interacts with other oceanic and atmospheric regions
- Use a regional modeling approach for mechanistic experiments
 - Play with oceanic and atmospheric lateral boundary conditions

- Oceanic interaction: STC interaction with AMOC
 Wen et al. (2011), J. Climate
- Atmospheric interaction: AMM interaction with ENSO
 - Patricola et al. (2014), J. Climate

Paleo proxies indicate that during YD events, AMOC weakens substantially, causing surface cooling in the north Atantic and warming in tropical South Atlantic

Paleo-SST reconstruction during YD

Lea et al. (2003)

Question 1

• What are the factors that affect the Tropical Atlantic response to AMOC slowdown?

- How does the AMOC interact with the winddriven subtropical cell (STC)?
- What is the role of atmosphere-ocean interaction?

GFDL Coupled Model Response to Water Hosing

Upper Circulation of Tropical Atlantic Ocean

• ASTC is highly asymmetric about the equator

• The pathway of the northern STC to the equatorial zone is blocked by the AMOC return flow along the western boundary (Zhang et al. 2004; Schott 1998; Fratantoni 2000).

Regional Coupled Model (RCM)

T42 spectrum truncation

18 vertical layer

Atmosphere

Figure 1. Model configuration and vertical structure of temperature and velocity assumed in the model equations.

Model Evaluation: Annual Mean Currents

Teleconnection Mechanisms: Oceanic Processes

Hypothesis: AMOC modulates equatorial SST by modifying pathways of STCs (Chang et al.2008)

Idealized "OBS" Subsurface Temp

Sensitivity of SST response to changes in AMOC

Reversal of western boundary current

Sensitivity of SST response to changes in AMOC

Reversal of western boundary current

- Dynamics of the Western Boundary Current in the Tropical Atlantic plays an important role in Atlantic climate change
 - Affects position of ITCZ and Nordeste rainfall
- Competition between AMOC and the STC in the NH thermocline
 - Can explain nonlinear response to AMOC slowdown (Chang et al., 2008; Wen et al., 2010, 2011)

Variability in Atlantic Tropical Storm numbers

Environmental precursors for hurricane genesis Gray (1968, 1979)

- Sea surface temperatures > 26 degrees C
 - Sufficiently deep mixed layer (> 50m)
- Deep conditional instability
 - Cooling with height, mid-tropospheric moisture
- Low values (< 10 m/s) of vertical shear between 850 hPa and 200 hPa
- Sufficiently removed from equator for Coriolis effect
- Pre-existing disturbance with cyclonic vorticity

Tropical Atmospheric Bridge (Klein et al, 1999)

Vertical shear and hurricanes

Observed relationships between Atlantic TCs and ENSO

	eastern Equatorial	Tropical Atlantic	Tropical Atlantic	Atlantic TC
	Pacific SST anomaly	vertical wind shear	static stability	season
El Niño	warm	increase	increase	inactive
La Niña	cool	decrease	decrease	active

[Gray 1984; Shapiro 1987; Gray and Sheaffer 1991; Gray et al. 1993; Goldenberg and Shapiro 1996; Richards and O'Brien 1996; Knaff 1997; Tang and Neelin 2004; Camargo et al. 2007; others]

Atlantic Meridional Mode (AMM)

Positive AMM:

- warm northern tropical Atlantic SST
- cool southern tropical Atlantic SST
- ITCZ shifted northward

Negative AMM:

- cool northern tropical Atlantic SST
- warm southern tropical Atlantic SST
- ITCZ shifted southward

Top: Regression maps of the Maximum Covariance Analysis leading mode sea surface temperature (SST) normalized expansion coefficients on SST and 10-m wind vectors. Wind vectors are plotted where the geometric sum of their correlation coefficients exceeds the 95% confidence level. Middle: Same as top, but for precipitation (mm/day). In general, shaded regions in all panels exceed the 95% confidence level.

Correlations between Atlantic hurricane activity and climatic indices

	MDR SST	AMM	AMO	Nino 3.4
unfiltered	0.45	0.64	0.44	-0.31
Low-pass filtered (decadal)	0.79	0.75	0.80	-0.03
High-pass filtered (interannual)	0.21	0.49	0.01	-0.44

(significant at 95% level, unless stricken out)

[from Vimont and Kossin, 2007]

Observed relationships between Atlantic TCs and AMM

	tropical Atlant	ic SST anomaly	Tropical Atlantic	Tropical Atlantic	Atlantic TC
	northern	southern	vertical wind shear	static stability	season
positive	warm	cool	decrease	decrease	active
negative	cool	warm	increase	increase	inactive

[Kossin and Vimont, 2007; Vimont and Kossin, 2007]

Atlantic TCs and Atlantic SST: Landsea et al. 1999; Goldenberg et al. 2001; Vitart and Anderson (2001); Emanuel (2005); Trenberth (2005); Webster (2005); Holland and Webster (2007); Knutson et al (2007); others

- What is the impact of <u>concurrent</u> modes of tropical Pacific (ENSO) and Atlantic (AMM) climate variability on seasonal Atlantic tropical cyclone activity?
 - How do ENSO and AMM constrain the upper and lower limits of seasonal Atlantic TC activity?

Remote (ENSO) vs. local (AMM) influences on Atlantic TC activity

Observational analysis

Influence of concurrent AMM and ENSO on Atlantic TC activity

Observations from HURDAT [Landsea et al. 2004]

Observed Atlantic ACE: ENSO and AMM

Observed Atlantic ACE: Composites by ENSO and AMM

Average deviation from 1950-2012 mean in seasonal Atlantic ACE (%) from HURDAT according to Aug-Oct averaged AMM and ENSO. Phases defined by the 0-25th and 75-100th percentiles.

Influence of concurrent AMM and ENSO on Atlantic TC activity

Model simulations

Regional climate model

- Weather Research and Forecasting Model (WRF)
- 27 km resolution, 28 levels in vertical
- Lateral boundary conditions: 6-hourly NCEP-II reanalysis
- SST and sea ice: monthly HadISST
- control simulation: 15 January 1980 31 December 2000

Regional climate model: control simulation

Regional climate model: experimental design

Regional climate model: experiments

ENSO forcings (obse	rved case of Pa	cific SST and LBCs)
El Niño	1987	95 th percentile Niño 3.4
La Niña	1999	15 th percentile Niño 3.4
AMM forcings (observ	ved case of Atla	ntic SST)
Positive	2005	95 th percentile AMM index
Negative	1984	5 th percentile AMM index
Neutral	1987	60 th percentile AMM index
Moderately positive	1999	80 th percentile AMM index

Simulations (3- or 4-member ensembles):

- El Niño &
 - AMM- (strong)
 - o AMM neutral
 - AMM+ (strong)
- La Niña &
 - o AMM- (strong)
 - o AMM + (moderate)
 - AMM+ (strong)

Regional climate model: experiments

ENSO forcings (obs	served case	of Pacific SST and LBCs)
El Niño	1987	95 th percentile Niño 3.4
La Niña	1999	15 th percentile Niño 3.4
AMM forcings (obs	erved case o	of Atlantic SST)
Positive	2005	95 th percentile AMM index
Negative	1984	5 th percentile AMM index
Neutral	1987	60 th percentile AMM index
Moderately positive	1999	80 th percentile AMM index

/+

Allows us to understand TC activity response to combinations of extreme phases of ENSO and AMM for which we do not yet have observations

Atlantic TCs response to AMM and ENSO

Genesis Potential Index (GPI)

$$GPI = \left|10^{5} \eta\right|^{3/2} \left(\frac{H}{50}\right)^{3} \left(\frac{V_{pot}}{70}\right)^{3} \left(1 + 0.1V_{shear}\right)^{-2}$$

(Emanuel and Nolan, 2004)

 $\begin{aligned} \eta &= absolute \ vorticity \ at \ 850 \ hPa \\ H &= relative \ humidity \ at \ 600 \ hPa \\ V_{shear} &= vertical \ wind \ shear \ between \ 850 \ hPa \ and \ 200 \ hPa \\ V_{pot} &= potential \ intensity \ (function \ of \ SST \ and \ vertical \ profiles \ of \ atmospheric \ temperature \ and \ moisture) \end{aligned}$

Contour: GPI of 0.5 in climatology (solid) and experiment (dash)

Environmental response to AMM and ENSO: Genesis Potential Index

$$GPI = \left|10^{5} \eta\right|^{3/2} \left(\frac{H}{50}\right)^{3} \left(\frac{V_{pot}}{70}\right)^{3} \left(1 + 0.1 V_{shear}\right)^{-2}$$

Deviation from ASO 1980-2000 mean (%) in GPI over the development region from model simulations (black); The same, calculated by varying each term while keeping others to climatology (grey).

Response in vertical wind shear to AMM and ENSO

TCs are largely inhibited for shear over a threshold of about 7.5 – 10 m/s [Zehr 1992; DeMaria et al. 1993]

CMIP3: Projected change in vertical shear

Observations and simulations demonstrate importance of AMM and ENSO together in determining seasonal Atlantic TC activity.

- ENSO alone is not a good predictor of Atlantic TC activity.
- Combination of unfavorable ENSO and AMM conditions not necessary to suppress Atlantic TC activity
 - Saturation effect for vertical wind shear values exceeding ~ 10 m/s
 - El Niño is not required for lower limit of TC activity.

• Concurrent strong ENSO and AMM phases that separately <u>oppose each other</u> in their influence on Atlantic TC activity produce <u>near-average</u> seasons.

• La Niña and positive AMM <u>work together</u> constructively to support extremely <u>active</u> Atlantic TC seasons largely through mid-tropospheric moisture.

• Atlantic TC activity response is non-linear to increasing AMM, most strongly during La Niña conditions.

• Implications for hurricanes in past and future climates?