ENSO precursors and building an operational ENSO monitoring system

Bruce T. Anderson Dep't. of Earth & Environment Boston University

Laying the Groundwork

- Validation Time
 - Extended Boreal Winter (~Nov.-Mar.)
 - Robust ENSO signal
 - Relatively high impact (particularly on North America)
- Initialization Time
 - "Quantitative ENSO Forecast" (QEF): 0-6 Months prior to event
 - Post-Spring Predictability Barrier
 - First-order feedbacks are predominantly positive
 - Can still be substantial "unforced" ENSO development during this time
 - Monitoring region is "relatively" well constrained
 - "Medium Range ENSO Forecast" (MREF): 6+ Months prior to event
 - Pre-Spring Predictability Barrier
 - Substantially more *potential* initiation mechanisms
 - Need to discern which processes and metrics are worth monitoring
- Target
 - Magnitude <u>and</u> Structure
 - Both characteristics modulate local and far-field climate responses to ENSO
 - Both have "preferred" precursors, suggestive of different initiation mechanisms

Pate Variability & Predi

Precursor Nonpareil: Subsurface Heat Content

Climate Variability & Predicta

Multivariate Regression w/NINO3.4(yr+1)

Operational Monitoring System Requirements

- "MREF" Precursors: > 6 months
 - Subsurface ocean temperatures
 - Vertically integrated
 - Horizontal and vertical gradients
 - Western equatorial wind stress
 - Events
 - Accumulated Influence
 - Meridional mass transport
 - ENSO v. Non-ENSO
 - Directly measured
 - Derived: Wind-stress gradients and thermocline depth changes
 - Air-sea interactions (?)
 - N. Pacific Meridional mode
 - Western North Pac, Mode
 - Indian and Atlantic SSTs (see Dayan et al., 2014, 2015 for good review)

- "QEF" Precursors: 0-6 Months
 - Subsurface ocean temperatures
 - Equatorial wind stress
 - Westerly wind burst events
 - MJO
 - Basin-wide modification of trades
 - Air-sea Interactions
 - Convection
 - Surface heat budgets
 - Tropical ocean circulation
 - Equatorial Currents&Upwelling
 - Temperature, Salinity, and Density Gradients
 - Mixing/Diffusion/Entrainment
 - Remote atmospheric circulations
 - Seasonal footprinting SSTs
 - North Pacific Oscillation
 - S.Pacific Meridional Mode
 - Southern Hemisphere "Booster"
 - Tropical Atlantic Variability

Building an Operational Monitoring System

- "MREF" Precursors: > 6 months
 - Subsurface ocean temperatures
 - Direct measurements
 - Satellites
 - Reanalyses
 - Western equatorial wind stress
 - Direct measurements
 - Satellites
 - Reanalyses
 - Meridional mass transport
 - Direct measurements
 - Reanalyses
 - Air-sea interactions (?)
 - Direct measurements
 - Satellites
 - Reanalyses

- "QEF" Precursors: 0-6 Months
 - Subsurface ocean temperatures
 - Equatorial wind stress
 - Air-sea Interactions
 - Direct measurements
 - Satellites
 - Tropical ocean circulation
 - Direct measurements
 - Satellites
 - Reanalyses
 - Remote atmospheric circulations
 - Direct measurements
 - Satellites
 - Reanalyses

Panel Science Strategies and Goals

Monitoring and predicting the evolution of ENSO cuts across the Science Strategies and Goals of all three panels:

- POS: Advocate and leverage long-term climate monitoring strategies to better document, understand, model and predict climate variability
 - What are the most robust monitoring products
 - What monitoring strategy best balances the skill/parsimony trade-off
- PSMI: Promote process studies to gain a quantitative understanding of the mechanisms controlling climate variability and change, and to provide observational data to evaluate and improve models; Improve climate models, including their representation of processes, data assimilation approaches, and evaluation
 - What monitoring products are needed to evaluate processes within models
 - What monitoring products are needed to be better initialize models
- PPAI: Develop and employ techniques to critically assess improvements in predictions and projections in order to build the confidence of users and to identify the most likely targets for future improvements; Apply fundamental lessons from research on climate to facilitate knowledge transfer between the various scientific communities that generate and use information on climate variability and change
 - What processes should be monitored when?
 - Which potential sources of improved ENSO prediction are "Data limited" v. "Science limited"
 - What monitoring products can be used to "condition" skill/uncertainty of ENSO predictions?

Mate Variability & Predicts

Unperturbed ENSO Growth (Larson & Kirtman, 2015)

Proposed Remote SST Precursors (Dayan et al., 2015)

