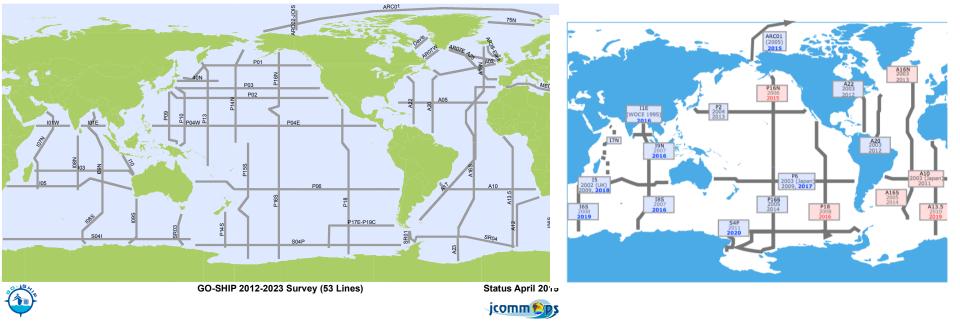
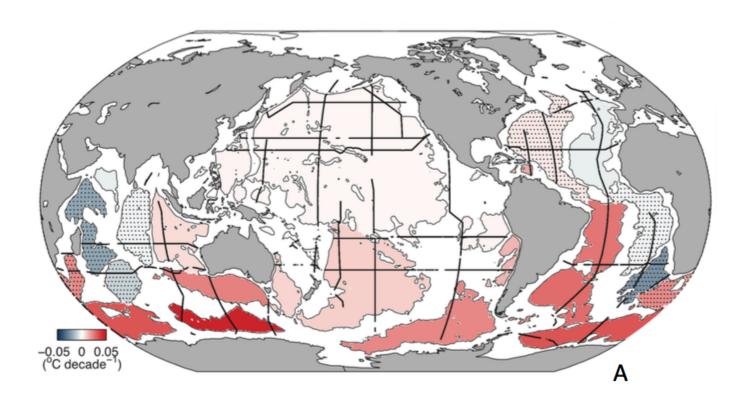
GO-SHIP Science Results

Fred Bingham Renellys Perez


What is U.S. GO-SHIP?

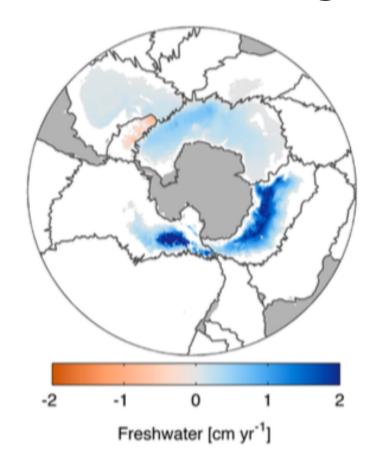
- Global Ocean Ship-based Hydrographic Investigations Program
- Under GCOS/GOOS and Global Ocean Acidification network internationally
- Contributes to WCRP and IOCCP internationally
- In the US, under US CLIVAR and OCB (Ocean Carbon and Biogeochemistry, part of USCCSP (US Climate Change Science Program))
- Grew out of WOCE in the late 80's / 90's
- Rigorous data policies and data management
- International: GO-SHIP Executive Committee http://www.go-ship.org
- U.S.: Repeat Hydrography Oversight Committee http://ushydro.ucsd.edu

(presentation material given to us by L. Talley and R. Wanninkhof)


GO-SHIP Goals

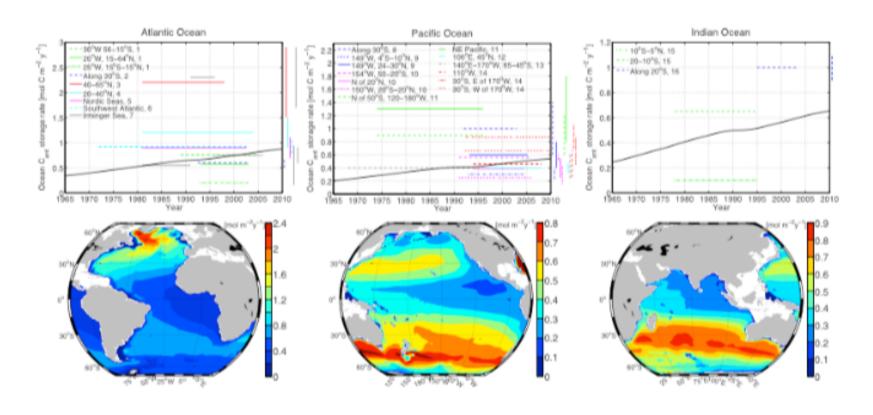
- Document the large-scale ocean water property distributions to the ocean bottom, their changes, and drivers of those changes,
- Determine the distributions and controls of natural and anthropogenic carbon (both organic and inorganic),
- Determine ocean ventilation and circulation pathways and variability using chemical tracers

- Approximately decadal repeat surveys
 - •First decadal survey after WOCE (2002-2012) was 97% completed.
- •Stations to ocean bottom, highest measurement accuracies.
- •Requirements for types of observations
 - •Profiles: CTD, oxygen, nutrients, DIC, alkalinity, pH, CFCs, velocity
 - •Underway: surface T/S, pCO₂, met. observations
- •Requirements for data reporting that is rapid in the context of CTD/chemistry/velocity profiling.
- •21 US cruises since 2003

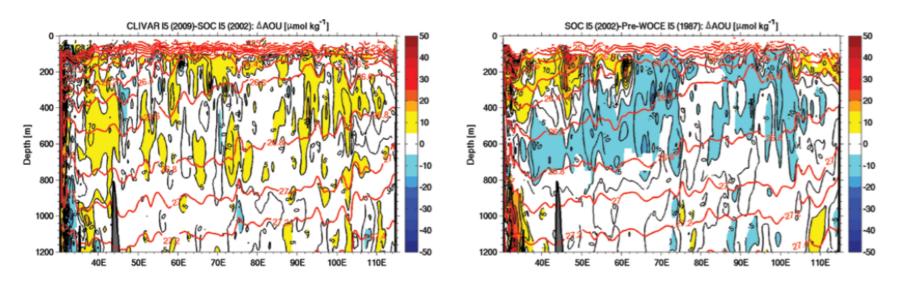

GO-SHIP science highlights

Rate of temperature change below 4000 m from repeat hydrography. Stippled areas are where change is not significant.

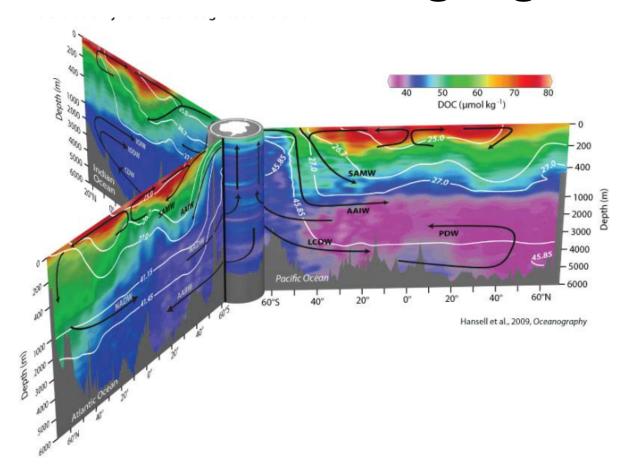
Purkey and Johnson, 2010, Talley et al., 2015


GO-SHIP science highlights

Rate of freshwater inventory change in the Southern Ocean below 0°C. This is a result of changes in AABW θ -S properties.


Purkey and Johnson, 2013

GO-SHIP science highlights


Anthropogenic CO₂ storage rate, in mol m⁻² yr⁻¹.

GO-SHIP Science Highlights

Changes in AOU (Saturation-actual O_2 concentration) along 32°S in the Indian Ocean, 2009-2002 (left) and 2002-1987 (right). Left panel shows an increase in O_2 in the S. hemisphere thermocline, right panel shows a reverse in that trend (Mecking et al., 2012).

GO-SHIP Science Highlights

DOC Sections in the 3 major ocean basins along GO-SHIP sections. Also shown is the vertical and horizontal spreading of some named water masses (black) and isopycnals (white). Hansell et al., 2009 and Talley et al., 2015.

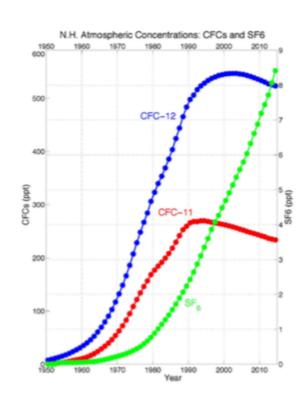
GO-SHIP Pluses

- Tight integration of physical oceanography and biogeochemistry
- Coordination with international governing bodies (GOOS, IOCCP)
- Highest standards for sampling accuracy
- Rapid dissemination of data and open data sharing policy
- Sampling of deep ocean
 - Changes in heat and freshwater content. CO₂ and transient tracer changes, etc.
- Reference data for calibration of autonomous sensors and models
- Platform with high quality reference data for experimental or 1time programs (see next slide)
- U.S. leadership in fully international program

Example: P16S, austral fall 2014

Principal Investigators for US-Repeat Hydrography(GO-SHIP) P16S

Program	Affiliation*	Principal Investigator	email
CTDO/Rosette,	UCSD/SIO	Lynne Talley	ltalley@ucsd.edu
Nutrients, O ₂ , Salinity, Data			
Management	UCSD/SIO	James H. Swift	jswift@ucsd.edu
Transmissometer	TAMU	Wilf Gardner	wgardner@ocean.tamu.edu
ADCP, LADCP	U Hawaii	Eric Firing	efiring@soest.hawaii.edu
Chipod (T variance)	OSU	Jonathan Nash	nash@coas.oregonstate.edu
	OSU	James Moum	moum@coas.oregonstate.edu
	UCSD/SIO	Jennifer MacKinnon	jmackinnon@ucsd.edu
CFCs, SF ₆ , N ₂ O	U Washington	Mark Warner	mwarner@uw.edu
³ He, ³ H	LDEO	Peter Schlosser	schlosser@ldeo.columbia.edu
DIC (Total CO ₂)	NOAA/PMEL	Richard Feely	Richard.A.Feely@noaa.gov
pH, Total Alkalinity	UCSD/SIO	Andrew Dickson	adickson@ucsd.edu
DOC, TDN	UCSB	Craig Carlson	carlson@lifesci.ucsb.edu
Radiocarbons (13C, 14C)	WHOI	Ann McNichol	amcnichol@whoi.edu
	Princeton	Robert Key	key@princeton.edu
∂^{15} N-NO ₃ , ∂^{18} O-NO ₃	Princeton	Daniel Sigman	sigman@princeton.edu
Dissolved Calcium	UCSD/SIO	Todd Martz	trmartz@ucsd.edu
∂³0Si	Princeton	Greg de Souza	gfds@princeton.edu
Pigments HPLC	NASA	Joaquin Chaves Cedeño	joaquin.e.chavescedeno@nasa.gov
CDOM	NASA	Joaquin Chaves Cedeño	joaquin.e.chavescedeno@nasa.gov
	UCSB	Norm Nelson	norm.nelson@ucsb.edu
IOP Cage	NASA	Joaquin Chaves Cedeño	joaquin.e.chavescedeno@nasa.gov
Hyperpro "Javelin"			· · · · · · · · · · · · · · · · · · ·
Biogeochemical Floats	Pre-SOCCOM/UW	Stephen Riser	riser@ocean.washington.edu
	MBARI	Ken Johnson	johnson@mbari.org
Surface Drifters	GDP/NOAA/AOML	Shaun Dolk	shaun.dolk@noaa.gov
pCO ₂ Underway Data	LDEO	Taro Takahashi	Takahashi@ldeo.columbia.edu
	NOAA/AOML	Rik Wanninkhof	rik.wanninkhof@noaa.gov
Ship's Underway Data	USAP	Joe Tarnow	Joe.Tarnow.Contractor@usap.gov
	USAP	Bryan Chambers	Bryan.Chambers.Contractor@nbp.usap.gov

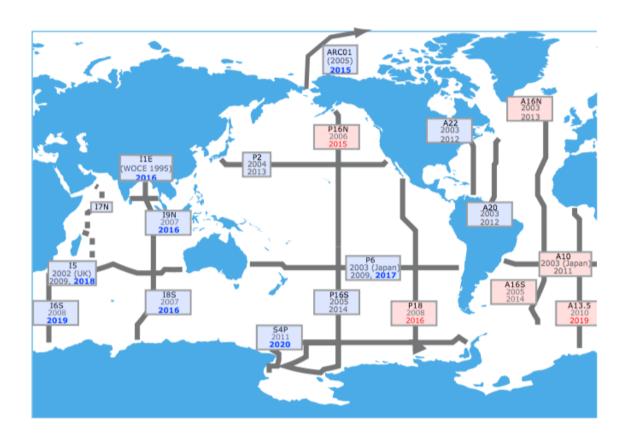

^{*}Affiliation abbreviations listed on page 11

Future Objectives

- Reduce uncertainties in global heat, FW and sea level budgets, especially below 2000 m
- Determine distributions of natural and anthropogenic carbon
- Determine ventilation rates and circulation pathways using chemical tracers
- Determine variability and controls of water mass properties and ventilation
- Determine significance of biogeochemically and ecologically important properties on the interior carbon cycle
- Test and validate new methods for high-res physical and biogeochemical measurements on autonomous vehicles

Issues

- Wide temporal sampling
- Expense of large hydrographic vessels and long lines
- Decreasing signal strength of bomb radiocarbon and CFCs (SF₆ replacing CFCs)
- Are snapshots useful?



Atmospheric concentration of CFCs & SF6, northern hemisphere

Needs

- Clear organizational relationship between US-CLIVAR, UC OCB, and US GO-SHIP
- Guidance about how to make their data more accessible and used by the community
- Any measurements that GO-SHIP is not making that they should/could?
- Formal external program review at the national or international level?

What's next?

Blue and red text shows planned lines and year for the US element of GO-SHIP