

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

 Use best available data assimilation methods from Geophysical Dynamical Systems Theory

- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

DATA ASSIMILATION

- Reanalysis ≠ Observed
- Modeler perspective:
 DA initializes the model
- Observationalist perspective:
 DA interpolates the observations
- DA is a careful balance of observations, models, and theory, and experiences the strengths and weaknesses of these inputs.

OCEAN ASSIMILATION ADVANCEMENTS AT NCEP TO DATE:

- Oceanic Local Ensemble Transform Kalman Filter (Ocean-LETKF) system (Penny et al., 2013)
- Hybrid-Gain assimilation method (Penny 2014)
- Hybrid 3DVar/LETKF Global Ocean Data Assimilation
 System (Hybrid-GODAS) at NCEP (Penny et al., 2015)
- 21-Year Hybrid GODAS Reanalysis (Penny et al., in preparation)

21-YEAR HYBRID-GODAS REANALYSIS

TEMPERATURE AND SALINITY (O-F) RMSD AND BIAS REDUCED USING THE HYBRID-GODAS (5-DAY FORECASTS)

21-YEAR HYBRID-GODAS REANALYSIS

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

THE EARTH IS ONE SYSTEM

- There are no boundaries, these are fictions.
- There are no ocean parameters that don't matter to atmospheric forecasts (at least on some timescale).
- NCEP is moving toward a fully coupled (via NEMS)
 Next Generation Global Prediction System (NGGPS)
 for 'seamless' ensemble-based prediction.
- That means: the same forecast system for weather, subseasonal, and seasonal timescales

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

USE ALL DATA

- The ocean is a drastically under-observed domain
- The ocean models can and must 'learn' from the atmosphere, land, aerosol, and sea-ice measurements
- Covariances across domain 'boundaries' are a statistical representation of physical processes

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

'THINK BIG'

- Stay ahead of future computing trends
- Pay attention to 'Big-Data' technology advancements
- Large amounts of metric data can be stored and mined for important error correlations, teleconnections, etc.
- GOES-R will produce 3.5 TB of data per day*
- The CERN Data Center processes 1 PB per day. The Meyrin site currently provides 45 PB of data storage on disk.
- The NSA's Bumblehive is capable of storing a yottabyte of data (that's one billion PB)**
 - * http://www.goes-r.gov/mission/top-five.html
 - ** http://www.bbc.com/news/business-26383058

- Use best available data assimilation methods from Geophysical Dynamical Systems Theory
- The Earth is one system
- Bridge disciplines
- Use all data
- Think Big

ENSEMBLE PREDICTION IS BECOMING THE STANDARD AT NCEP

- NCEP weather forecasts (today)
- Hybrid-GODAS ocean prediction (near future)
- Next Generation Global Prediction System (NGGPS) and Climate Forecast System (CFSv3) (future)
- That means uncertainty in surface fluxes (heat, momentum, freshwater), ocean parameters (SST, SSS, SLA), thermocline depth, and more, can be represented and propagated until sufficiently constrained by observations.

CLIMATE FORECAST SYSTEM V3

Aerosol

Current CFSv3 components

Sea Ice

WEAKLY COUPLED DATA ASSIMILATION

Aerosol

Current CFSv3 components

Ocean D

Sea Ice

COUPLING ONLY ON FORECAST

STRONGLY COUPLED DATA ASSIMILATION

STRONGLY COUPLED DA REDUCES ERRORS (vs. weakly coupled DA)

For example, assimilating only atmospheric observations leads to significant improvements in ocean:

(Note: Observing System Simulation Experiments (OSSEs), not real data) Experiments by Travis Sluka with coupled SPEEDY/NEMO, UMD PhD Student

STRONGLY COUPLED DA REDUCES ERRORS (vs. weakly coupled DA)

OBSERVING / MODELING GAPS

- All new instruments should have a forward model constructed (mapping a simulated earth system state to a simulated observational value)
- Comparisons between models and new observed quantities can be made more more easily
- These data can more readily be included into operational data assimilation

REALTIME DATA METRICS

- The CFSv3, for example, will produce a set of observation-space metrics that will be valuable for model and forecast evaluation
- For example, the following may imply:
 - $||O-F||_i>>0$ and $||A-F||_i<<1=>$ poor model uncertainty $||O-A||_{i-1}<<1$ and $||O-F||_i>>0=>$ model off true attractor or obs error is large
 - EnsStDev($\{O-F\}_i$) << $||O-F||_i$ => not enough dynamical instability in model

NEED DEEP OCEAN MEASUREMENTS

- The deep ocean is invisible to most operational DA implementations: neither resolved by observations or models.
- Need more, e.g.

(DEEPSEA CHALLENGER)

- Expanded Deep Argo (perhaps varying drift depths)
- North Atlantic deep convection and overflow regions
- Deep equatorial currents

NEED NEAR SURFACE MEASUREMENTS

- To best resolve the diurnal cycle:
- Need more, e.g.
 - High spatial and temporal resolution upper ocean measurements
 - Especially in the tropics
 - Evaluating surface ocean, atmosphere, and fluxes

RESEARCH NEEDS FOR IMPROVED METRICS

- Greater attention is needed toward estimating the instantaneous statistical modes
- Error in the instantaneous 1st moment (ensemble mean) creates the short-timescale model biases that compound to form long-term model drift
- Error in the instantaneous second moment (ensemble variance) leads to diverging attractors and thus to poor prediction skill

Last Slide!

MODELING GAPS: TO SUPPORT ENSEMBLES

- Mixed-resolution ensembles are inevitable. This requires statistics of the low-res models to match the statistics of the high-res model ensembles.
 - (e.g. Parameterizations determining uncertainty at low resolution must correspond to uncertainties at higher resolutions. e.g. stochastic parameterizations.)
- Automated 'model output statistics' act as a transformation from the model attractor to the true attractor.

 (improvements to the hindcast/reforecast approach needed)

Contact: <u>Steve.Penny@noaa.gov</u>