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Diurnal Cycle of Convection
Basis for generation of precipitation

Convective clouds form over the mountains in
the morning.

By afternoon and everning storms propagate
to the west towards the Gulf of California
where they can organize into mesoscale
convective systems if there is sufficient
moisture and instability.

It’s likely that a resolution less than 5 km, or
alternatively superparmeterization, is
necessary to represent this process correctly
in regional models. Global models pretty
much fail.



Reflectivity with Wind Vectors Zonal Wind Vertical Wind
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Figure 10: Cross sections of WRF model simulated radar reflectivity (dBZ) (left panels)
on domains 2 and 3 with corresponding zonal and vertical wind velocities (m standm s
g respectively) (center and right panels) at 0300 UTC 14 July. Wind vectors on radar
reflectivity panel are scaled such that the horizontal wind is ten times larger than the
vertical wind. The vertical planes to construct the cross section are defined intersecting a
point at 29.69° N and 111.4° W and extending along constant latitude from 112.5° W to
107.5° W, and the frames have a height of about 20 km. They are averages of parallel
planes north and south of the center and extend through the depth of the model.




Model precipitation biases in WRF:
downscaled NCEP reanalysis and CFSv1
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Castro et al. (2012, J. Climate)

Systematic problems in the
climatological representation of
rainfall that are clearly terrain-
dependent. Similar problems in other
RCMs.

Reflects the fact that the RCM is
challenged to represent organized,
propagating convection, irrespective of
the driving GCM.

This type of convection varies on an
intraseasonal timescale and accounts
for more precipitation away from the
mountains.
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oreal warm season atmospheric teleconnection
Per classifications of Ding et al. (2011, J. Climate)

Western Pacific North Circumglobal
America Pattern (WPNA) Teleconnection (CGT)

ENSO/PDV Forced: Early summer ()))

(a) Probably most seasonally predictable (a)y CGT Mode 1
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Figure 15. (a) Cartoon illustrating the CGT atmospheric teleconnection
Figure 14. (a) Idealized atmospheric teleconnection pattern associated  pattern associated with JJ REOF 2 (likely associated with the CGT).
with JJ REOF 1 (ENSO/PDV forcing dominaat). (b) Idealized atmo- () Cartoon illustrating the CGT atmospheric telecoanection pattern
spheric teleconnection pattern associated with AS REOFI (likely  aq50ciated with JJ REOF 5 (likely associated with the CGT). Wet/dry
dependent on Asian monsoon convection). Wet/dry areas over the areas over the United States indicated by blue/red.
United States indicated by blue/red. ’

carelli et al. (2013, Int. J. Climatol.) ‘




Influence of Atlantic Multidecadal Oscillation
e.g. Hu and Feng (2011, J. Climate)
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FIG. 1. (a) North Atlantic Ocean surface temperature anomalies
in the warm phase of the AMO, and (b) as in (a), but for cold phase
(unit: C). The SST anomalies are inflated by 2 tmes to amplify the
signal to noise ratio and allow for dear dissection of causal
mechanisms.



a) Three-cell anomalous circulation in lower troposphere during warm phase
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b) Three-cell anomalous circulation in lower troposphere during cold phase
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Cold phase: Stronger North
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Great Plains low-level jet.
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FIG. 7. Schematic summary of pressure and flow anomalies (the three-cell anomalous cir- . .
culation) in the lower troposphere during the (a) warm and (b) cold phase of the AMO and in Interacts Wlth ENSO_PDV forced
the upper troposphere during the (¢) warm and (d) cold phase of the AMO. The hatched areas va ria b| | Ity

have above average summer (JJA) precipitation and the dotted areas have below-average
summer precipitation. The double line in (¢),(d) indicates the upper-troposphere front.

Hu and Feng (2011, J. Climate)



Antecedent Land Surface Conditions
e.g. Zhu et al. (2007, J. Climate)
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FiG. 1. Proposed winter-summer land surface-atmosphere
feedback hypothesis for the North American monsoon.

Most of these types of studies explore this hypothesis in a statistical framework only.

The alternative hypothesis of atmospheric teleconnection mechanisms previously
presented is also supported by idealized dynamical modeling.



Antecedent Precipitation (JFM) Anomalies
associated with early and late monsoons

in northwest Mexico
Zhu et al. (2007, J. Climate)
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FiG. 9. JFM relative P anomaly composite for early and late monsoon years for MSa for 1950-99. Shaded area is =25% (dark) or
- s
=—25% (gray).

Resembles classic ENSO-type signature for winter precipitation variability in North
America



Current warm season seasonal forecast skill in North

American Multimodel Ensemble (NMME)
Kirtman et al. (2014, Bull. Amer. Meteor. Soc.)
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FiG. 9. Precipitation forecast RPSS for the (a) grand NMME multimodel
ensemble and for (b) CFSv2. The skill is based on hindcasts initialized in Jan
1982-2009 and verified in the following JJA seasonal mean for tercile forecasts.
Positive values indicate probabilistic skill that is better than climatology, and
negative values indicate probabilistic skill that is worse than a climatological
forecast. Global-averaged RPSS is noted in the figure.



Are skillful seasonal NAMS forecast possible?
Castro et al. (2012, J. Climate)

REOF 1[JJ.SPI(WRF —CFS)] 18.7% (1982~00)
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Global seasonal forecast models,

251 -iﬁE}é such as the Climate Forecast System

, i B model used by U.S. Climate Prediction

Center do have an ability to
statistically represent WPNA response
and its impact on warm season
precipitation.

o[PC1(WRF-CFS),AGPH(500 mb)] JJ 1982~2000

For skillful NAMS forecasts, a seasonal
forecast GCMs must have an ability to
deterministically represent warm
season atmospheric teleconnections.

FI1G. 18. (top) Most highly correlated mode of early warm season (JJ) SPI in WRF-CFSin
comparison to first three REOF early warm season SPI modes from WRF-NCEP, shown as
the regression on the principal component with variance explained. Specifically, this mode is
most highly correlated with the second REOF from WRF-NCEP at a value of 0.44 with
significance exceeding the 95% level. (middle) Corresponding PC correlation on normalized
500-mb geopotential height anomalies from CFS. (bottom) Corresponding PC correlation on
CFS SSTA.



Observed Change in Early and Late Warm Season

Climatology: 1980-2010 minus 1950-1980
Chang et al. (JGR, accepted)

NLDAS temp climatology anomaly [JJ] (K) NLDAS temp climatology anomaly [AS] (K)
L (r-— . Lf}\: = - - % i ,_:-5-. 2 - “ P -
’ | B Y /- l,c R T R \ e, 1.5
o — T s L e B e Wl v E 1
45°N e : : o 45°N SR o : b
0 0
05 ~05
1 -1
35°N 1.5 35°N 15
25°N 250N
15°N . 150N E
130°W 110°W 90°W 70°W 130°W 110°W 90°W 70°W
50
459N 40 45°N
30
20
10
35°N 0 35°N
-10
~20
-30
25°N -40  25°N
-50
15°N . 15°N
130°W 110°W 90°W 70°W 130°W

Recent observational record seems to comport with “wet gets wetter, dry gets drier idea”
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Ensemble mean JA projected precipitation change (%)

of NARCCAP models and degree of confidence
Bukovsky et al. (2015, J. Climate)

Considering the core NAMS
region, the change in
precipitation is slightly
negative.

But this decrease is
relatively small and there is

little agreement among the
NARCCAP models.
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Figure 2: Average JA precipitation change (%) from the baseline period in the 11-model ensemble mean.
Precipitation is presented following methodology proposed by Tebaldi et al. (2011), with slight modification:
hatching indicates where more than 50% of the models show change that is significant at the 0.10 level (as
determined by a t-test) and where more than 75% of the models agree on the sign of change (thus, where
the majority of the models agree on significance and sign). White grid cells indicate where more than 50%
of the models show change that is significant but also where 75% of the models or less agree on the sign of
the change (thus indicating true disagreement and little information). Additionally, the number of models
that agree on the sign of the change is indicated by the color saturation and value (the vertical axis on the
color bar). To facilitate creating this ensemble average, all models were regridded to a common 0.5° x 0.5°
latitude/longitude grid.
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Figure 3: JA average precipitation change (%) from the baseline period. Hatching indicates where the change
is statistically significant at the 0.1 level.

Bukovsky et al. (2015, J. Climate)

Note in some cases there
can be differences in the
sign of precipitation
projections among RCMs
even when forced by the
same CMIP3 GCM.



Improved North American monsoon

precipitation in CMIP5 models
Cook and Seager (2013, J. Geophys. Res.)

Precipitation, GPCC vs CMIP5 (1980-1999)
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Figure 2. Comparison of precipitation climatologies (1980-1999) for the core NAM region in the CMIP5
historical simulations (dashed lines) and the GPCC precipitation data (grey line). Lowest resolution models
are shown in (a), highest resolution models are displayed in (b). Where multiple ensemble members were
available, the model climatologies represent ensemble averages.



Ensemble mean changes in North American

Monsoon Precipitation in CMIP5 models
Cook and Seager (2013, J. Geophys. Res.)
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Figure 7. Multi-model mean precipitation differences (mm day™), calculated as mean precipitation for
2080-2099 (RCP 8.5 scenario) minus the mean precipitation for 1980-1999 (historical scenario) for the
extended monsoon season (May-October). Core NAM region is outlined with the black dashed lines. Grey
crosses indicate cells for which the sign of the change in at least 9 of the 11 models agrees with the sign of
the change in the multi-model mean.

Decreases in
precipitation during
early summer due to
enhanced atmospheric
stability, under more
intense monsoon ridge.

Increases in
precipitation in late
summer and early fall
once stability barrier
can be overcome.



What causes extreme precipitation in the West?
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Technical Approach

Dynamical downscaling to address severe weather question
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Yields climate change projection results that simulate possible changes in extreme events in
a physically-based way, using a well-established modeling paradigm for weather
forecasting.




Panel issues

How should the NMME reforecast (and other similar) products be used to
evaluate warm season skill? Should there be some distinction between the
large-scale atmospheric circulation and surface temperature and precipitation?

What are physically based metrics that could be applied to climate prediction
and projection models (e.g. NMME and CMIP) that could be used as differential
weighting in creating ensemble averages?

It is well recognized in weather forecast community that convective resolving
scale (or superparameterization) is essential for the warm season to reasonably
simulate organized convective structures. How do we adapt this paradigm for
climate forecasts/projections in a way that is computationally feasible?

Do we need a community MRED Phase Il experiment to evaluate the value
added of regional modeling with use of the NMME reforecast data? What kinds
of procedures and metrics would be appropriate for an effort of this type?



