# Cross-cutting Strategies Intersection with Goals

|                                                                                                                           |                                            |                                                                                                |                                                                                     | PPAI Panel                                                          |                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Cross-cutting<br>Strategies<br>Goals                                                                                      | Sustained and<br>new<br>observations       | Process studies                                                                                | Model<br>development<br>strategies                                                  | Quantifying<br>improvement<br>in predictions<br>and<br>projections  | Communication<br>of climate<br>information                                       |
| Understand the role of<br>the oceans in climate<br>variability on different<br>timescales                                 | Document<br>variations                     | Collect & provide<br>data to evaluate<br>and improve<br>models                                 | Improve climate<br>models across<br>processes and<br>timescales                     | Understand<br>limits of climate<br>predictability                   | Prioritize<br>observing network<br>and predictability<br>studies                 |
| Understand the<br>processes that<br>contribute to climate<br>change and variability in<br>the past, present and<br>future | Document climate-<br>critical processes    | Investigate<br>processes to help<br>explain variations                                         | Property<br>conserving<br>climate<br>reanalyses                                     | Quantify<br>importance of<br>model<br>uncertainty in<br>projections | Set priorities<br>for observations<br>and predictability<br>studies              |
| Better quantify<br>uncertainties in the<br>simulations and<br>projections of climate                                      | Evaluate model simulations                 | Validate model<br>representation of<br>relevant observed<br>processes                          | Improve models                                                                      | Quantify<br>model,<br>structural and<br>scenario errors             | Address needs for<br>predictability and<br>sensitivity studies                   |
| Improve the<br>development and<br>evaluation of climate<br>simulations                                                    | Evaluate climate<br>models                 | Provide data to<br>develop and test<br>model process<br>representation                         | Reduce biases<br>in climate<br>models                                               | Quantify<br>importance of<br>model physics<br>errors                | Determine key<br>targets for model<br>development                                |
| Collaborate with<br>research communities<br>that develop and use<br>climate information                                   | Provide multi-<br>disciplinary<br>datasets | Provide process<br>understanding<br>and opportunity<br>for collaboration<br>across disciplines | Strengthen<br>communication<br>between<br>observational<br>and model<br>communities | Improve<br>communication<br>across<br>disciplinary<br>boundaries    | Provide<br>information on<br>dominant climate<br>phenomena and<br>predictability |

2015 US CLIVAR Summit

August 4-6 Tucson, Arizona

**US CLIVAR** 

Climate Variability & Predictab

#### Panel feedback on and consideration of action items for:

- Identify and prioritize strategies that aid in "Quantifying improvements in predictions" [Cross Cutting Strategy 4 (CCS4)] and "Communication of Climate Information" [CCS5] through the <u>Assessment of Decadal</u> <u>Sensitivity of Coupled Natural/Human Systems</u>
  - In many disciplines a standard use of climate information is to take previously-determined climate "modes" of variability and test their impacts on a given system; in this regard the climate system is a black box that generates patterns to be used as input for system sensitivity tests
  - Predictability studies in climate science often focus on patterns inherent within the physical system, with little regard as to their impacts; in this case, the impacts—i.e. changes in the mean state of an affected system—are not treated as a variation of the climate itself in the same way that changes in temperature or precipitation are
  - We suggest that climate impact assessment will be improved with an end-toend approach where neither the climate predictability problem nor the systems sensitivity problem is treated in isolation

#### Panel feedback on and consideration of action items for:

- Identify and prioritize strategies that aid in "Quantifying improvements in predictions" [Cross Cutting Strategy 4 (CCS4)] and "Communication of Climate Information" [CCS5] through the <u>Assessment of Decadal</u> <u>Sensitivity of Coupled Natural/Human Systems</u>
- The main goals of these strategies are the following
  - Determine what climate impacts on natural and human systems are most sensitive to decadal scale variability
  - Identify, evaluate and develop improved climate-prediction metrics (including those related to probabilities/uncertainties) for applications-based use
  - Provide/solicit guidance on methods to assess conditional skill of decadal climate-impact predictions and the release, dissemination, and use of "outlooks of opportunity"
- We will start by providing insights on some <u>aspects</u> of these issues. However, we are tasked principally with developing strategies and "implementation approaches" (i.e. tactics) for achieving the goals listed here

# **Implementation Approaches**

#### Panel and cross-panel feedback on and consideration of action items for:

- Working Groups
  - New WGs starting in 2015; no new WGs in 2014
- Science Teams
  - Additional Science Team recommendations for IAG consideration?
- Climate/Application Process Teams
  - New CPTs possibly to be solicited in 2014
- Science Meetings/Workshops
- Agency-supported Research Calls to implement coordinated observation and data projects; field campaign and process research; modeling, prediction and applications projects
- Opportunities for Students, Postdocs, and Early-career Scientists
- Wiki and Collaboration websites; Collaboratories; Other???

#### Panel feedback on and consideration of action items for:

- Identify and prioritize strategies that aid in the <u>Assessment of</u> <u>Decadal Sensitivity of Coupled Natural/Human Systems</u>
- The main goals of these strategies are the following
  - Determine what climate impacts on natural and human systems are most sensitive to decadal scale variability
  - Identify, evaluate and develop improved climateprediction metrics (including those related to probabilities/uncertainties) for applications-based use
  - Provide/solicit guidance on methods to assess conditional skill of decadal climate-impact predictions and the release, dissemination, and use of "outlooks of opportunity"

- Outstanding Issues w/r Decadal Climate Prediction
  - The assessment of skill of model based decadal predictions has not been very promising



Kim et al. (2012)

2015 US CLIVAR Summit Aug

August 4-6 Tucson, Arizona



- Outstanding Issues w/r Decadal Climate Prediction
  - Improved process understanding of drivers of decadal variations needed to understand what is (and is not) predictable



- Outstanding Issues w/r Decadal Climate Prediction
  - The observing system needed to initialize decadal predictions is still lacking



2015 US CLIVAR Summit

August 4-6 Tucson, Arizona



- Outstanding Issues w/r Decadal Climate Prediction
  - Modulation of seasonal scale phenomenon (e.g., ENSO) by decadal variability is of societal relevance if it can be anticipated; same for other "white noise" climate variations



- We hypothesize that climate impact assessment will be improved with an end-to-end approach where neither the climate predictability problem nor the systems sensitivity problem is treated in isolation
- Potential Research Activities:
  - Quantify the robustness and sensitivity of sectoral, regional and aggregate system-specific impacts at discrete time-scales
  - Isolate frequencies of multi-scale climate variability and climate change to which a particular system is highly sensitive
  - Quantify the (conditional) predictability and uncertainty of "resonant" climate drivers and system responses at highlysensitive time-scales
  - Assess the sectoral, regional, and aggregate implications of system-specific climate predictions