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Northeast Pacific. The northeast Pacific
may be the most studied area in terms of
regime shifts (10, 11, 13, 14). Only a few of
the most notable changes are highlighted
here. An important change for this region is
an intensification (sardine) or relaxation (an-
chovy) of the Aleutian Low (15). During the
sardine regime from the late 1970s to the
early 1990s, zooplankton and salmon de-
clined off Oregon and Washington but in-
creased off Alaska (11, 14). Seabird popula-

tions decreased off California (22) and Peru.
The California Current weakened and moved
shoreward at this time, as evidenced by
warmer temperature and lower salinity near
the coast (23). A stronger and broader Cali-
fornia Current, brought about during the an-
chovy regime, is associated with a shallower
coastal thermocline from California to British
Columbia, leading to enhanced primary pro-
duction (Fig. 2). Off Peru, biological variabil-
ity is similar to that observed off California.

Equatorial Pacific. El Niño dominates the
conditions in the upper ocean of the equato-
rial Pacific. During El Niño, the surface wa-
ters of the central and eastern equatorial Pa-
cific warm, and upwelling and primary pro-
ductivity decrease (24). However, recent ev-
idence suggests that the equatorial Pacific is
also subject to multidecadal fluctuations in
upwelling and water mass transport (25) that
are superimposed on the higher frequency El
Niño pattern. The meridional overturning cir-
culation associated with equatorial upwelling
has slowed by about 25% since the 1970s
(Table 1).

The equatorial Pacific is a strong natural
source of carbon dioxide (CO2) to the at-
mosphere because of upwelling of high-
CO2 waters from depth (26 ). A reduction in
upwelling during the sardine regime would
decrease the flux of CO2 to the atmosphere
from this region (25, 27 ). Data collected in
the equatorial Pacific since 1981 show a
strong correlation between surface nitrate
content, supplied by upwelling, and chlo-
rophyll (r ! 0.86, P " 0.001); both of these
properties decreased between the 1980s and
1990s in concert with the meridional over-
turning and upwelling (Table 1). The cir-
culation patterns (Fig. 3) are consistent
with a mechanism recently proposed to ex-
plain multidecadal fluctuations in ocean
temperatures (28). Further similarities to El
Niño are the strong ocean-atmosphere in-
teractions; multidecadal changes in circula-
tion are intimately tied to changes in the
wind field (25).

North Pacific subtropical gyre. The
depths of the thermocline and mixed layer
in the North Pacific subtropical gyre
change on a multidecadal scale. The ther-
mocline is shallower and the mixed layer
deeper during the sardine regime, resulting
in increases in primary production. Karl
and co-workers (29) suggested that phyto-
plankton biomass and primary productivity
in the north Pacific subtropical gyre were
lower before the mid-1970s than during the
1980s and 1990s. They also suggested that

Fig. 1. Anomalies of (A) global air temperature, with the long-term increase removed (8); (B) the
Pacific decadal oscillation (PDO) index (°C), derived from principal component analysis of North
Pacific SST (10); (C) the atmospheric circulation index (ACI), which describes the relative domi-
nance of zonal or meridional atmospheric transport in the Atlantic-Eurasian region (9); (D)
atmospheric CO2 measured at Mauna Loa (parts per million) with the long-term anthropogenic
increase removed (7); (E) the regime indicator series (RIS) that integrates global sardine and
anchovy fluctuations (5); and (F) a southeastern tropical Pacific ecosystem index based (19) on (G)
seabird abundance and anchoveta and sardine landings from Peru. All series have been smoothed
with a 3-year running mean.

Table 1. Comparison of upwelling (sverdrup)
(25), transport convergence (sverdrup) (25),
surface nitrate (#M), and chlorophyll (from
5°N to 5°S and from 95°W to 140°W) (#g
L$1) for the equatorial Pacific. The means
and standard errors are shown for two 10-
year periods.

1980–1989 1990–1999 Ratio

Equatorial
upwelling

42.1% 4.2 35.4% 4.8 0.84

Transport
convergence

20.5% 1.6 14.0% 1.5 0.68

Surface nitrate 5.41% 0.10 3.76% 0.34 0.70
Surface
chlorophyll

0.22%0.003 0.16%0.005 0.73
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plankton biomass and primary productivity
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New paradigm: climate perturbations can trigger 
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Northeast Pacific. The northeast Pacific
may be the most studied area in terms of
regime shifts (10, 11, 13, 14). Only a few of
the most notable changes are highlighted
here. An important change for this region is
an intensification (sardine) or relaxation (an-
chovy) of the Aleutian Low (15). During the
sardine regime from the late 1970s to the
early 1990s, zooplankton and salmon de-
clined off Oregon and Washington but in-
creased off Alaska (11, 14). Seabird popula-

tions decreased off California (22) and Peru.
The California Current weakened and moved
shoreward at this time, as evidenced by
warmer temperature and lower salinity near
the coast (23). A stronger and broader Cali-
fornia Current, brought about during the an-
chovy regime, is associated with a shallower
coastal thermocline from California to British
Columbia, leading to enhanced primary pro-
duction (Fig. 2). Off Peru, biological variabil-
ity is similar to that observed off California.

Equatorial Pacific. El Niño dominates the
conditions in the upper ocean of the equato-
rial Pacific. During El Niño, the surface wa-
ters of the central and eastern equatorial Pa-
cific warm, and upwelling and primary pro-
ductivity decrease (24). However, recent ev-
idence suggests that the equatorial Pacific is
also subject to multidecadal fluctuations in
upwelling and water mass transport (25) that
are superimposed on the higher frequency El
Niño pattern. The meridional overturning cir-
culation associated with equatorial upwelling
has slowed by about 25% since the 1970s
(Table 1).

The equatorial Pacific is a strong natural
source of carbon dioxide (CO2) to the at-
mosphere because of upwelling of high-
CO2 waters from depth (26 ). A reduction in
upwelling during the sardine regime would
decrease the flux of CO2 to the atmosphere
from this region (25, 27 ). Data collected in
the equatorial Pacific since 1981 show a
strong correlation between surface nitrate
content, supplied by upwelling, and chlo-
rophyll (r ! 0.86, P " 0.001); both of these
properties decreased between the 1980s and
1990s in concert with the meridional over-
turning and upwelling (Table 1). The cir-
culation patterns (Fig. 3) are consistent
with a mechanism recently proposed to ex-
plain multidecadal fluctuations in ocean
temperatures (28). Further similarities to El
Niño are the strong ocean-atmosphere in-
teractions; multidecadal changes in circula-
tion are intimately tied to changes in the
wind field (25).

North Pacific subtropical gyre. The
depths of the thermocline and mixed layer
in the North Pacific subtropical gyre
change on a multidecadal scale. The ther-
mocline is shallower and the mixed layer
deeper during the sardine regime, resulting
in increases in primary production. Karl
and co-workers (29) suggested that phyto-
plankton biomass and primary productivity
in the north Pacific subtropical gyre were
lower before the mid-1970s than during the
1980s and 1990s. They also suggested that

Fig. 1. Anomalies of (A) global air temperature, with the long-term increase removed (8); (B) the
Pacific decadal oscillation (PDO) index (°C), derived from principal component analysis of North
Pacific SST (10); (C) the atmospheric circulation index (ACI), which describes the relative domi-
nance of zonal or meridional atmospheric transport in the Atlantic-Eurasian region (9); (D)
atmospheric CO2 measured at Mauna Loa (parts per million) with the long-term anthropogenic
increase removed (7); (E) the regime indicator series (RIS) that integrates global sardine and
anchovy fluctuations (5); and (F) a southeastern tropical Pacific ecosystem index based (19) on (G)
seabird abundance and anchoveta and sardine landings from Peru. All series have been smoothed
with a 3-year running mean.

Table 1. Comparison of upwelling (sverdrup)
(25), transport convergence (sverdrup) (25),
surface nitrate (#M), and chlorophyll (from
5°N to 5°S and from 95°W to 140°W) (#g
L$1) for the equatorial Pacific. The means
and standard errors are shown for two 10-
year periods.

1980–1989 1990–1999 Ratio

Equatorial
upwelling

42.1% 4.2 35.4% 4.8 0.84

Transport
convergence

20.5% 1.6 14.0% 1.5 0.68

Surface nitrate 5.41% 0.10 3.76% 0.34 0.70
Surface
chlorophyll

0.22%0.003 0.16%0.005 0.73
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QUESTION:

Are these real regime-shift in the ecosystem?
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QUESTION: 

Does this 2x integration ocean transport 

model work in Pacific coastal systems?
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