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Southern Ocean and Climate
• Deep water masses come to the surface in the Southern Ocean and 
exchange heat/carbon with atmosphere

• Mixing plays a key role in transporting heat, carbon and nutrients in and 
out of the Southern Ocean along and across isopycnal
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Tracer sampling

• Tracer released (107°W, 58°S) on 
ρ=27.9 kg/m3 (1500m) in Feb 2009

• Tracer was sampled on a grid after 
1 year and along a few transects 
after 2, 2.5 years and 3 years

The tracer spread both along and across density surfaces 



Diapycnal mixing
• The diapycnal diffusivity is the rate at which the tracer cloud spreads vertically
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• The diapycnal diffusivity is small upstream of Drake Passage (1x10-5 m2/s) 
Ledwell et al. (JPO, 2011)

• The diapycnal diffusivity is large downstream of Drake Passage(40x10-5 m2/s) 
Watson et al. (Nature, 2013)



Isopycnal diffusivity

• The isopycnal diffusivity is the rate at which the tracer cloud spreads laterally
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• The isopycnal diffusivity upstream of Drake Passage is 710±260 m2/s 
Tulloch, Ferrari et al. (JPO, 2014)
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Isopycnal diffusivty: model
• MIT General Circulation Model, 3 km horizontal resolution, 100 vertical levels

• Forced with reanalysis surface fluxes and state estimate at lateral boundaries
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Isopycnal diffusivity 

• The DIMES tracer indicate that at 1500m, K=710±260 m2/s 

• The model tracers indicate that K is less than 500 m2/s in the upper 
kilometer and reaches 900 m2/s at 2000 m

• The isopycnal diffusivity peaks at the critical level where the eddies 
drift at the mean flow speed

GM diffusivityTracer diffusivity

DIMES



Conclusions

‣ The diapycnal diffusivity is enhanced close to topography in 
Drake Passage (St. Laurent et al., 2012, Watson et al., 2013)

‣ The isopycnal diffusivity peaks to 900 m2/s at 2000m, the 
interface between upper and lower MOC cells (Tulloch et al., 
2014; LaCasce et al., 2014)

‣  The GM diffusivity is uniform and close to 400 m2/s (Mashayek 
and Ferrari, to be submitted)

‣ New eddy parameterizations are developed to capture 
variations of isopycnal diffusivity with depth (Bates, Marshall, 
Ferrari, 2014)



Vertical structure of K
• Eddy mixing is suppressed in the upper kilometer and enhanced at 

steering levels where U=c
• The vertical structure of K is well described by linear theory 

(Bretherton, 1966; Green, 1970; Ferrari and Nikurashin, 2010)
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