Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean

Raffaele Ferrari
Earth, Atmospheric and Planetary Sciences, MIT

in collaboration with the DIMES group

Southern Ocean and Climate

- Deep water masses come to the surface in the Southern Ocean and exchange heat/carbon with atmosphere.
- Mixing plays a key role in transporting heat, carbon and nutrients in and out of the Southern Ocean along and across isopycnal.

Neutral density (kg m3) section in the Pacific Ocean (WOCE, P16)
• Deep water masses come to the surface in the Southern Ocean and exchange heat/carbon with atmosphere
• Mixing plays a key role in transporting heat, carbon and nutrients in and out of the Southern Ocean along and across isopycnal

Neutral density (kg m3) section in the Pacific Ocean (WOCE, P16)
• Tracer released (107°W, 58°S) on $\rho=27.9$ kg/m3 (1500m) in Feb 2009
• Tracer was sampled on a grid after 1 year and along a few transects after 2, 2.5 years and 3 years

The tracer spread both along and across density surfaces
Diapycnal mixing

- The diapycnal diffusivity is the rate at which the tracer cloud spreads vertically

\[
\kappa \equiv \frac{1}{2} \frac{d}{dt} \left(\frac{\langle (z - z_c)^2 c \rangle}{\langle c \rangle} \right) \approx \frac{1}{2T} \left[\frac{\langle (z - z_c)^2 c(T) \rangle}{\langle c(T) \rangle} - \frac{\langle (z - z_c)^2 c(0) \rangle}{\langle c(0) \rangle} \right]
\]

- The diapycnal diffusivity is small upstream of Drake Passage \((1 \times 10^{-5} \text{ m}^2/\text{s})\)
 Ledwell et al. (JPO, 2011)

- The diapycnal diffusivity is large downstream of Drake Passage \((40 \times 10^{-5} \text{ m}^2/\text{s})\)
 Watson et al. (Nature, 2013)
Isopycnal diffusivity

- The isopycnal diffusivity is the rate at which the tracer cloud spreads laterally

\[
K \equiv \frac{1}{2} \frac{d}{dt} \left(\frac{\langle (y - y_c)^2 c \rangle}{\langle c \rangle} \right) \approx \frac{1}{2T} \left[\frac{\langle (y - y_c)^2 c(T) \rangle}{\langle c(T) \rangle} - \frac{\langle (y - y_c)^2 c(0) \rangle}{\langle c(0) \rangle} \right]
\]

- The isopycnal diffusivity upstream of Drake Passage is 710±260 m²/s
 Tulloch, Ferrari et al. (JPO, 2014)
Isopycnal diffusivity: model

- MIT General Circulation Model, 3 km horizontal resolution, 100 vertical levels
- Forced with reanalysis surface fluxes and state estimate at lateral boundaries

θ at 500m

Ali Mashayek
• The DIMES tracer indicate that at 1500m, $K=710\pm260 \text{ m}^2/\text{s}$
• The model tracers indicate that K is less than 500 m^2/s in the upper kilometer and reaches 900 m^2/s at 2000 m
• The isopycnal diffusivity peaks at the critical level where the eddies drift at the mean flow speed

Tracer diffusivity

GM diffusivity
Conclusions

- The diapycnal diffusivity is enhanced close to topography in Drake Passage (St. Laurent et al., 2012, Watson et al., 2013)

- The isopycnal diffusivity peaks to 900 m²/s at 2000m, the interface between upper and lower MOC cells (Tulloch et al., 2014; LaCasce et al., 2014)

- The GM diffusivity is uniform and close to 400 m²/s (Mashayek and Ferrari, to be submitted)

- New eddy parameterizations are developed to capture variations of isopycnal diffusivity with depth (Bates, Marshall, Ferrari, 2014)
Vertical structure of K

- Eddy mixing is suppressed in the upper kilometer and enhanced at steering levels where $U=c$
- The vertical structure of K is well described by linear theory (Bretherton, 1966; Green, 1970; Ferrari and Nikurashin, 2010)

Tulloch, Ferrari et many al., submitted