

Connecting Priorities Between PPAI's Predictions & Projections and Communicating Climate Information Activities

Gregg Garfin Simon Wang Arun Kumar

2015 US CLIVAR Summit

August 4-6

Tucson, Arizona

Agenda

- Connecting Priorities
- Evaluation of US CLIVAR Research
- Strategy for US CLIVAR-climate intermediary interactions

Cross-Cut Strategies

	POS Panel	PSMI Panel		PPAI Panel		
Cross-Cutting Strategies⇒ Goals ↓	Sustained and new observations	Process studies	Model development strategies	Quantifying improvement in predictions and projections	Communication of climate information	
Understand the role of the oceans in observed climate variability on different timescales	Document variations	Data to evaluate and improve models	Improve modeling of climate across processes and timescales	Understand limits of climate predictability	Prioritize observing network and predictability studies and improve predictions of ocean and climate variability	
Understand the processes that contribute to climate variability and change in the past, present, and future	Document climate- critical processes	Investigate processes to help explain variations	Property conserving climate reanalyses	Quantifying importance of model uncertainty in projections	Set priorities for observations and predictability studies; communicate about confidence and predictability	
Better quantify uncertainties in the observations, simulations, predictions, and projections of climate	Initialize and evaluate model simulations	Model assessment	Improve models	Quantify model, intrinsic and scenario errors	Address needs for predictability and sensitivity studies	
Improve the development and evaluation of climate simulations and predictions	Initialize and evaluate climate models	Provide data to develop and test model process representation	Reduce biases in climate models	Quantify importance of model physics errors	Determine key targets for model development across communities	
Collaborate with research and operational communities that develop and use climate information	Provide multi- disciplinary datasets	Provide process understanding and opportunity for collaboration across disciplines	Communicatior between observational and model communities	Improved communication across disciplinary boundaries	Provide information on dominant climate phenomena and predictability	

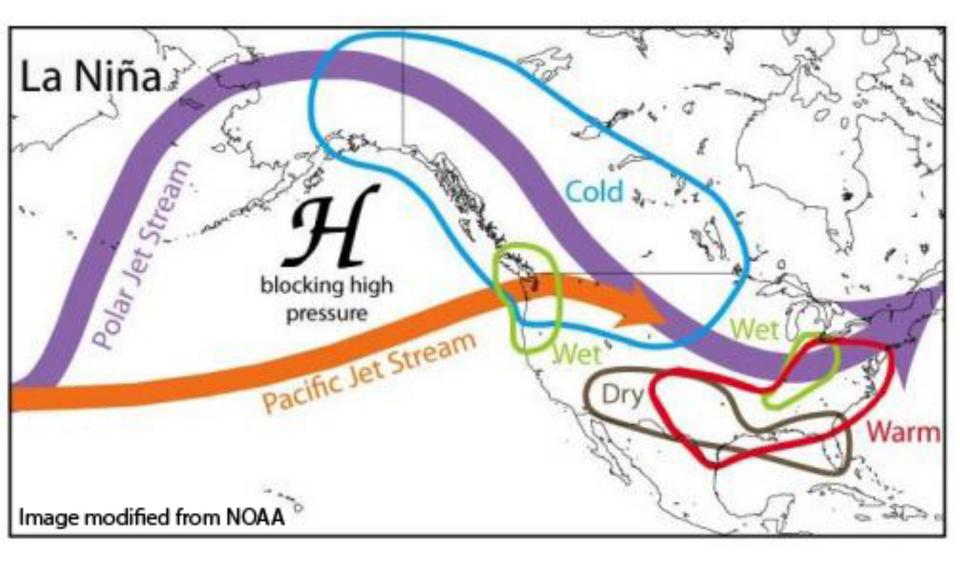
winty & Predictability

IVAR

Quantifying Improvements in Predictions and Projections

- I) Addressing Predictability & Prediction Across Timescales
- 2) Identifying Predictability and Skill Baseline and Limits
- 3) Evaluating Forecast Quality and Quantifying Uncertainties
- 4) Assessing whether ensemble spread is appropriate representation of uncertainty
- 5) Testing models against observational data and quantifying model biases and errors

Communication of Climate Information


- Identifying specific pathways for effective engagement of applications
- 2) Improving practices of model documentation and comparable quantitative evaluation
- 3) Developing information on uncertainties for climate service agencies that is useful for applications
- 4) Improving comprehension of distinctions of and connection among climate variability, anthropogenic forcing, and evolution of current climate state

riability & Prec

Connecting Priorities

^{ce} Variability & Predi

- Managing expectations: Risk management in the face of forecast uncertainty
- Successful transitions
- Research to Applications
 - Seasonal fire forecasts
 - NMME Missouri River Basin
 - Andrea's NRC presentation

National Seasonal Assessment Workshop

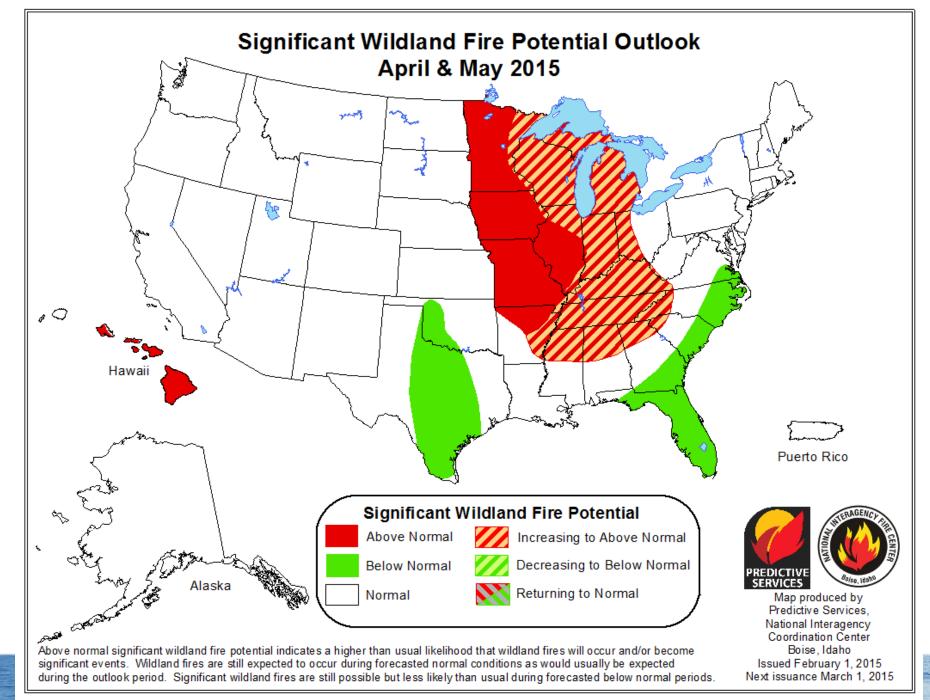
2003-2013

National Interagency Coordination Center

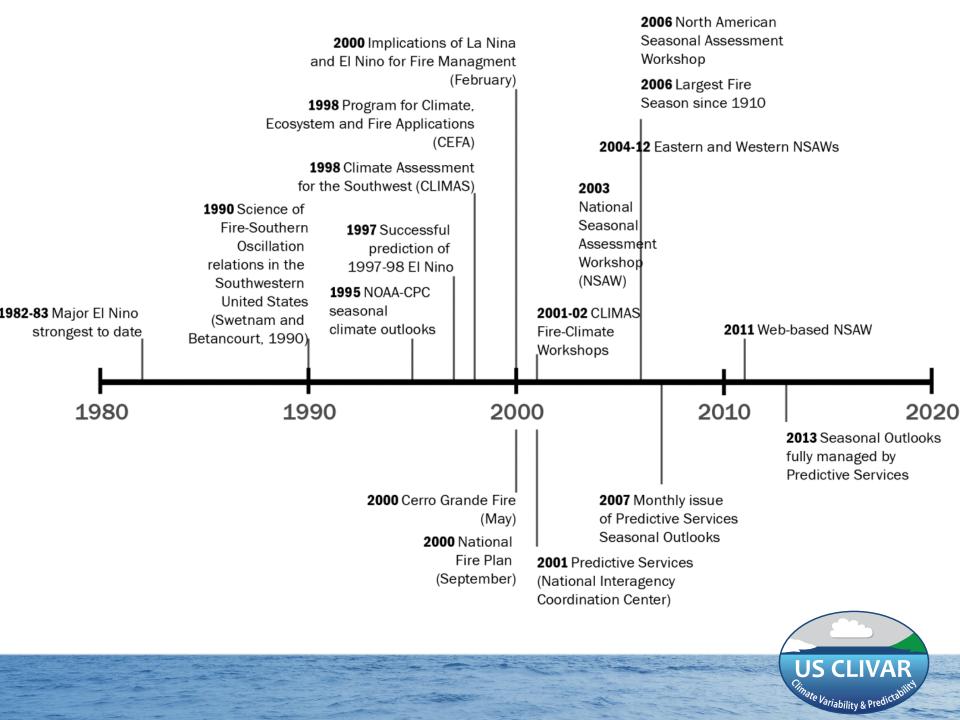
Desert Research Institute

Firefighter safety

Escalating costs of fire suppression


Prevention and public planning Setting priorities for allocation of firefighting resources at local, regional, and national scales

Multi-agency coordination and decision making \rightarrow preparedness levels Describing the level of uncertainty in fire behavior projections or model simulations

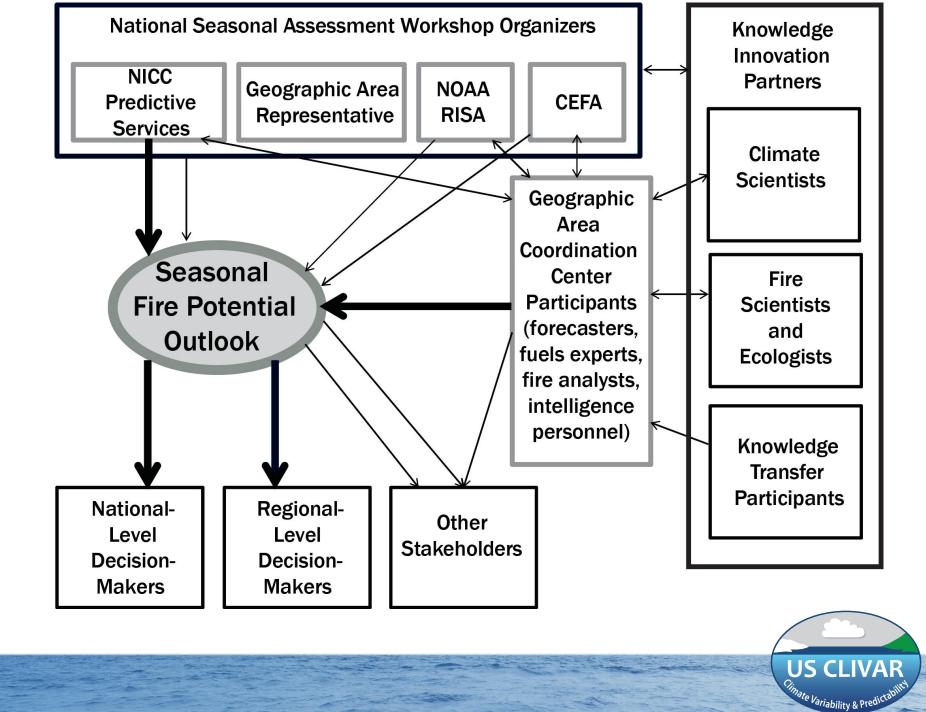

Supplemental and seasonal severity funding requests

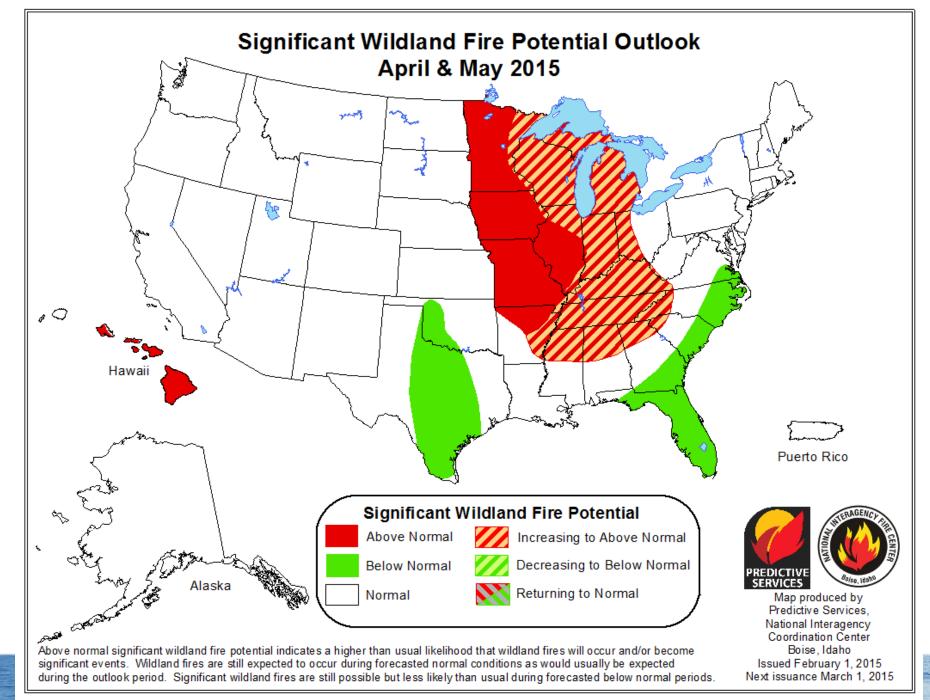
Prescribed fire planning and priority-setting Supporting landscape-level burn projects \rightarrow long time periods

Estimating the number of incidents over the course of a fire season

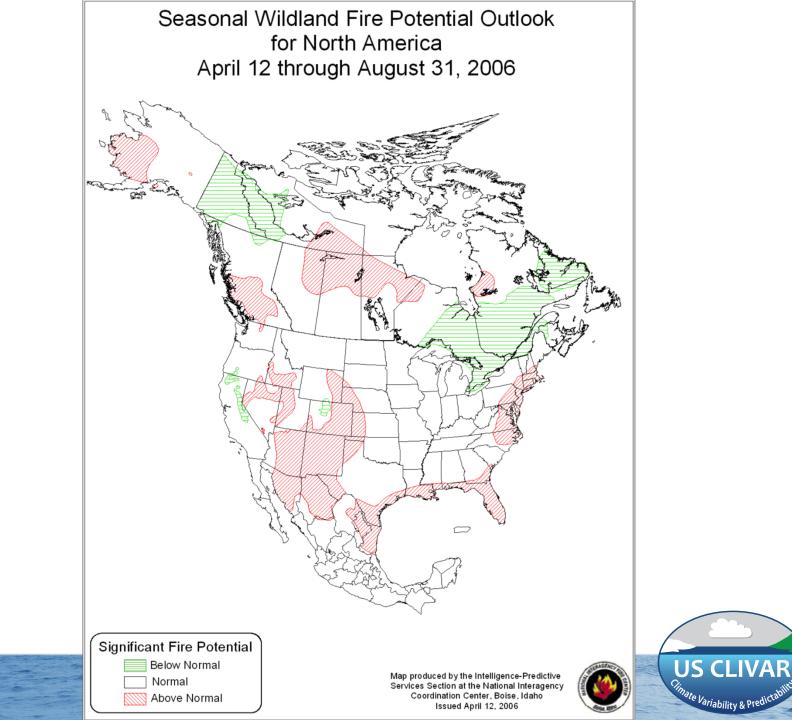
arlability & Preuv

Expert Assessment Forecast


- NOAA Seasonal Outlook
- Drought assessment
- Alternative forecasts
- Fuel condition assessments



Expert Assessment Forecast


- NOAA Seasonal Outlook
- Drought assessment
- Alternative forecasts
- Fuel condition assessments

arlability & Preuv

Strategy for Facilitating Interactions Between US CLIVAR and Climate Intermediaries

Andrea Ray Gregg Garfin

2015 US CLIVAR Summit

August 4-6

Tucson, Arizona

Climate Science Intermediaries

- DOI CSC
- DOI LCC
- NOAA RISA
- USDA Regional Hubs
- IRAP/IRI
- SERDP?
- EPA?
- Private Sector/NGO?
 - Riskybusiness.org

Facilitating Interactions

- Opportunities to address applications and climate services audiences
 - Co-development of research and research plans
 - Build on assessment of US CLIVAR science that is ready to be applied regionally, or in specific contexts
 - Opportunities through USGCRP/OSTP guidance to funding agencies for 2017 – Food-Energy-Water Nexus

Dear Colleague Letter: SEES: Interactions of Food Systems with Water and Energy Systems

February 2, 2015

Dear Colleagues:

NSF established the Science, Engineering, and Education for Sustainability (SEES) investment area in 2010 to lay the research foundation for decision capabilities and technologies aimed at mitigating and adapting to environmental changes that threaten sustainability. SEES investments advance a systems-based approach to understanding, predicting, and reacting to stress upon and changes in the linked natural, social, and built environments. In this context, the importance of understanding the interconnected and interdependent systems involving food, energy, and water (FEW) has emerged. Through this Dear Colleague Letter (DCL), the NSF aims to accelerate fundamental understanding and stimulate basic research on systems that extend beyond the interests of the SEES Water Sustainability and Climate (WSC) program to include couplings to energy and food systems where the NSF already has established presence.

- SEES (science, engineering and education for sustainability)
 - advance a systems-based approach to understanding, predicting, and reacting to stress upon and changes in the linked natural, social, and built environments.
- Many factors including changing land-use practices; increased urbanization; population growth and distribution; changing demand...and climate variability - create stresses on water, energy, and agriculture resources and systems in multiple and sometimes unexpected ways.

- The NSF requests innovative proposals in the form of (1) supplements, to build upon existing NSFfunded research activities; or (2) workshops of typically 30-80 attendees that stimulate debate, discussion, visioning and collaboration across research communities.
- These proposals should address the coupled nature of the food, energy, and water system and the interdisciplinary dimensions of physical, natural, biological, cyber, and social/behavioral processes of relevance.

- Division of Chemical, Bioengineering, Environmental, & Transport Systems
- Division of Earth Sciences
- Division of Environmental Biology
- Division of Behavioral and Cognitive Sciences
- Experimental Program to Stimulate Competitive Research
- Division of Chemistry
- Division of Computer and Network Systems
- Division of Undergraduate Education

Thank You

Connecting Priorities

- Managing expectations: Risk management in the face of forecast uncertainty
- Identifying audiences for prediction and projection science
 - Detection and attribution
- What does US CLIVAR need to learn from audiences, in order to prioritize Prediction and Projection science for application? Is there a needs assessment activity ? What details will help US CLIVAR scientists determine when and whether the activity is worth investment of time?
- Internally: what are the common priorities for Prediction and Projection science and Communicating Climate Information?

ariability & Pred

Facilitating Interactions

- What are elements of the strategy?
 - US CLIVAR research prospectus: identifying and conveying research useful to intermediaries and back to info providers
 - Develop a schedule of interactions
 - Develop feedback indicators How do we know the relationship is worth US CLIVAR effort?
- How does US CLIVAR facilitate interaction? What unique aspect does US CLIVAR bring to the interaction?
- What are the goals of the interactions?
 - Determine which US CLIVAR research is ripe for use?
 - 2-pager assessment papers
 - Assess needs of the intermediaries for US CLIVAR research?
 - Establish enduring relationships for future collaboration?

NSAW Attributes	Bales et al. (2004) [37]	Jacobs et al. (2005) [5]	NRC (2005) [38]
Process co-managed by NICC and	Number and frequency of	Process was	Process metrics measure
RISA partners; Adaptive learning	quality scientist-	representative; Process	the course of action
and sharing of techniques;	stakeholder interactions;	was credible; Solutions	taken to achieve a goal:
Workshop organization that is	Evidence of team	were implementable;	planning, strategy,
responsive to participant needs	integration		leadership, promoting
and requests; Decreased time			partnership
necessary to develop forecast			
reports, as a result of improved			
preparation and enhanced			
understanding of workshop			
process			
Funding commitment from	No equivalent metric	Stakeholders invested	Input metrics are tangible
partner agencies; Increased		staff time or funding;	quantities put into a
commitment by climate forecast		Costs and benefits were	process: intellectual
agencies to provide training, tailor		equitably distributed	foundation, commitment

Stakeholders acknowledge use	No equivalent	No equivalent	Output metrics
of information for pre-season	metric	metric	measure services
resource allocation and funding			delivered: peer-
decisions			reviewed broadly
			accessible results,
			stakeholder
			judgment of results
			for decision-making,
			communication of
			results to an
			appropriate range of
			stakeholders

