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LETTER

Intensification and spatial homogenization of coast
upwelling under climate change

Daiwei Wang', Tarik C. Gouhier?, Bruce A. Menge® & Auroop R. Ganguly’

The timing and strength of wind-driven coastal upwelling along the
eastern margins of major ocean basins regulate the productivity of
critical fisheries and marine ecosystems by bringing deep and nutrient-
rich waters to the sunlit surface, where photosynthesis can occur' .
How coastal upwelling regimes might change in a warming climate
is therefore a question of vital importance®®. Although enhanced
land-ocean differential heating due to greenhouse warming has been
proposed to intensify coastal upwelling by strengthening alongshore
winds®, analyses of observations and previous climate models have
provided little consensus on historical and projected trends in coastal
upwelling” '*, Here we show that there are strong and consistent
changes in the timing, intensity and spatial heterogeneity of coastal
upwelling in response to future warming in most Eastern Boundary
Upwelling Systems (EBUSs). An ensemble of climate models shows
that by the end of the twenty-first century the upwelling season will
start earlier, end later and beoome more intense at high but not low
htitudes. This projectg > : - ntensity and duration

< udiml variation in coastal upwelling. These patterns are coM
tent across three of the four EBUSs (Canary, Benguela and Humboldt,
but not California). The lack of upwelling intensification and greater
uncertainty associated with the California EBUS may reflect regional
controls associated with the atmospheric response to climate chan 2

of ooastal upwellmg may
marine biodiversity.

d0i:10.1038/nature1423

ecosystem processes such as the recruitment of rocky intertidal organ-
isms, and changes in these upwelling characteristics have been shown t
cause substantial disturbances to ecosystems at multiple trophic levels**’.
Climate change is expected to affect coastal upwelling and, thus, marin
ecosystems in the EBUSs"*. Bakun proposed a mechanism whereb
greenhouse warming would intensify the summertime alongshore win
and coastal upwelling by strengthening the land-sea thermal differen
and surface pressure gradient in upwelling regions®. Subsequent analyses
based on historical observations and palaeoclimate reconstructions hav
found evidence for increased upwelling-favourable winds in some part
of the EBUSs™'*"* but not in others'**’, leading to disagreements abou
coastal wind trends across different data sources™*’. Climate model studi
on projected changes to coastal upwelling have also yielded inconsisten
results’’ . Thus, there seems to be considerable debate regarding th
impact of climate change on coastal upwelling’. A recent retrospectiv
meta-analysis partially addressed this controversy by showing that coas
upwelling has intensified over the past 60 years®'. Here we present
complementary prospective analysis using state-of-the-art climate mod
to understand how coastal upwelling will change under future green-
ouse warming over the course of the twenty-first century. We use off-
hore wind-driven Ekman transport as an index of coastal upwellin
and analyse historical and future simulations of 22 Earth system model
developed for the Coupled Model Intercomparison Project phase 5*
(CMIP5) at multiple latitudes along the four EBUSs (Fig. 1a and Extended
Data Fig. 1). These CMIP5 models reproduce the observed latitudin:
variation in upwelling duration (Fig. 1b-€) and intensity (Fig. 1f-i) ac
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OMZs and the Hadley Circulation?

(Stramma et al., 2008)

Karnauskas and Ummenhofer (2014)
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OMZs and Hadley Circulation
Oxygen Minimum Zones (OMZs)
) ) ) Co-located at Eastern edge of most ocean basi...
Many marine animals are stressed in OMZs.

Located in productive oceanic zones OMZs strongly determined by upwelling

Expanded and shoaled over last 50 years Meridional winds affect upwelling in Eastern edges of
Likely to continue with increased ocean basins
temperatures

De La Cruz Tello, Ummenhofer, and Karnauskas, in prep.




Composite analysis
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Dissolved Oxygen Concentration (y,mol / kg)
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ENSO and ocean acidification

Mean surface [CO,*] ENSO regression
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[mmol m3]

Lovenduski et al. (in review), Biogeosciences



