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Outline

* Qver the past two decades the Arctic has been warming
more than twice as fast as the rest of the globe and is
referred to as “Arctic Amplification” (AA)

» Concurrent with AA, extreme weather has been
observed to be increasing.

* There have been numerous theories linking AA to more
frequent and extreme weather/climate events, though
testing these theories is challenging due to large
natural variability, short observational record and model
shortcomings and conflicting results.

* We have assembled the leading scientists studying this
topic to move the science forward through meetings,

coordinated studies and future publications.
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Sea Ice Melt
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Sea lce and Snow Cover Decline
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Arctic Amplification
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DJF Surface Temperature Trends (1960-2013)
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Northern Hemisphere Land Temperatures 1987-2014

DJF Temperature Trend (88/89-13/14)
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Extreme Weather

b) Very wet day precipitation

d) Coldest daily minimum temperature

f) Number of icing days

g) Warm summer months (% of land) h) Cold winter months (% of land)

I
Cohenetal. 2014



Extreme Snowfall

Top 10 Snowstorms for Northeast US Cltles
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Extreme Rainfall

(a) May 2015

ave-5 regime

95%
(b) 1981-2014

trend (May) C.l.

(a) Zonal wave-5 regime of the May 2015 streamfunction anomalies at 250 hPa
overlaid with the climatological jet stream (hatched:; |V| > 25 m/s); the yellow-red
mark indicates the Texas floods. (b) Linear trend (slope) during the1981-2014
period of the wave-5 regime streamfunction (unit: 108 m2s-1) with the 95%
confidence interval shaded. Notice the phase coincidence between (a) and (b).

Simon Wang 10



e lrends in Extremes
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Trend in Polar Cap Geopotential Height 1988/89-2013/14
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Increase in stratosphere-troposphere coupling mid-late winter that favors a warmer polar
stratosphere and higher heights in the Arctic troposphere (negative AO/weak polar vortex).
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Extreme Weather

« Extreme weather is subjective and not well defined.

« Extreme weather is predicted to increase under climate
change and AA is not needed to explain an increase in
extreme weather.

* A challenge for the group is to identify which extremes
may or may not be influenced by AA.

« We are not simply focusing on extreme weather but
rather AA and linkages to changes in the atmospheric
circulation. However extreme weather is what the
public is most concerned about.



Theories linking AA to Mid-latitude Weather

* Changes to latitudinal temperature gradient
« Changes to the Jet Stream/blocking/wave speed

« Changes to atmospheric waves:
— Planetary waves (winter)
— Synoptic scale waves (summer)

* Changes to troposphere-stratosphere coupling

« Support of these theories are conditional and
challenged by imperfect observations and models
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Asia: Arctic-Midltitude Weather Linges

James Overland



North America: Warmer Arctic Temperatures

Can Reinforce Wavy Jet Stream

Wavier
Jet/Stream

Cold
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High Snow Forced Cold Signal

Stratospheric Polar Vortex Weakens

Stratosphere <Wa anE > @

Background
Westerlies
Upward Energy
Flux
Troposphere

Downward propagation of High
pressure and southward
displacement of jet.

High Pressure over the
Arctic and frequent
cold air outbreaks

Reglonal
Perturbation Negative Arctic Oscillation
over Siberia
— " S
Increased Eurasian snow cover
Sept  Oct Nov Dec

Cohen et al. 2007



Low Sea Ice Forced Cold Signal
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Surface temperature anomalies are inversely
proportional to the speed of the wind.

-4 -2 0 2 4 6

Regression slope (m?sf/°C) Temperature anomaly (°C)

This relationship is especially strong for Europe where the penetration of maritime
air is needed to keep temperatures moderate. Weakening of the westerly winds
will result in warmer temperatures.

I
Coumou et al. 2015



Arctic Amplification — Mid-latitude Weather

Arctic Amplification,

temperatures
increase

Higher geopotential
heights, weaker
westerly winds
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Wauvier jet stream,

' blocking :

- Em Em B B EE . "
Weather patterns
move eastward
more slowly

-

Extreme weather
more likely

F1G. 2. Hypothesized steps linking Arctic amplification with extreme
weather events in Northern Hemisphere midlatitudes.

Overland et al. 2015



Arctic Amplification - Jet Stream

Figure 3:

Schematic of a typical jet stream
trajectory (solid line) over North
America and the expected elongation
of ridge peaks northward (dashed line)
in response to Arctic Amplification.

Francis 2013



Natural Variability

* The role of natural variability on mid latitude weather is large
and it is always a challenge to separate the signal from the
noise.

* There are many factors influencing mid-latitude weather
and isolating one factor is difficult.

« We know that the tropics and mid-latitudes influence
the Arctic, therefore AA may be more of a response
than a cause.

* This is further complicated when studying extreme
events which are infrequent, may be poorly observed
and definitions are subjective and my be more societal

based than metric based.
T ——



Mid-latitude Weather is Complicated

-Summer/Early Fall Arctic Sea Ice Los

-Fall Eurasian Snow Cover Increase

NH CRYOSPHERE CHANGES
S
-Late Fall/Winter Arctic Sea Ice Loss
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Natural Variability in the Mid-latitudes

Internal atmospheric variability is large

DJF Atlantic Jet Latitude
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(a) 6 DJF Atlantic Jet Speed
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20th Century Reanalysis jet latitude and speed
red line denote NCEP-NCAR Reanalysis
Woollings et al. (2014; QIRMS)

- Decadal variability of jet position and speed is large

- Behavior over the past decade does not appear exceptional compared to the long-term
variability

Elizabeth A. Barnes
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Inverse AMV/NAO relationship in the 20CR reanalysis over 1901-2010
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Tropical Forcing

Observed&Simulated H500 anomalies for DJF2013/14

b)Paclflc+5SIC run c)TWP+SIC run

,‘ e i

a)OBsS, H500

-------------

: / ; ' b 1L 7 £ 1 o '
eI SRR cow o LR BRE T sow orl-— 4 L E oo

Froow 1207 L > : A 120W

Atmospheric model forced with warm SSTs in tropical Eastern Pacific responds with Arctic
warming and mid-latitude cooling

Lee et al. 2015



 Increased tropical Pacific SST causes a southward shift of the jet stream,
enhancing low troposphere baroclinicity and storm activity in US.
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u-wind (contours: climatology; shading: increased tropical Pacific SST)
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Challenges with Data and Models

 Short time series in observations

e Model deficiencies

* Uncoordinated modeling studies

* Biases and uncertainties in matrices for quantitative
analysis



Length of data series (<1O 20 YEars
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Large natural variability in the system makes detectln g3
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I
Same sea ice forcing — different model response
e
Internal atmospheric variability is large

Fall Winter
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Working Group Members

Scientist Affiliation Expertise

Elizabeth Barnes (ECS) Colorado State University Atmospheric dynamics - B
Uma Bhatt (SEARCH) University of Alaska Arctic climate - O

Dim Coumou PIK Climate impacts/extremes - O
Clara Deser NCAR Climate modeling - M

Steven Feldstein Penn State University Large Scale dynamics - B
Jennifer Francis (SEARCH) Rutgers University Arctic climate - O

Dorothy Hall NASA/GSFC Cryosphere/Climate - O
Arun Kumar NOAA CPC Climate prediction - M

Ron Kwok NASA/JPL Remote sensing/Arctic climate - O
Gudrun Magnusdottir University of California Atmospheric dynamics -M

Wieslaw Maslowski

Naval Postgraduate School

Arctic Oceanography - M

James Overland

NOAA/PMEL

Arctic - O

Yannick Peings (ECS)

University of California

Atmospheric dynamics -M

Emily Riddle (ECS)

University of Massachusetts

Climate variability - M

Ignatius Rigor

University of Washington/APL

Coordinator IAPB program - O

James Screen IM

University of Exeter

Climate variability and change - B

Julienne Stroeve

NSIDC

Sea ice -O

Stephen Vavrus (SEARCH)

University of Wisconsin

Arctic climate - M

Timo Vihma IM

Finnish Meteorological Inst.

Arctic boundary dynamics - O

Simon Wang

Utah State University

Atmospheric Dynamics - M




Previous Workshops (not all listed)

* National Academy of Sciences — September 2013
— Large gaps in our understanding
— short observations
— conflicting modeling studies

* Reykjavik Iceland— November 2013

- Topic is controversial
- There is little agreement on mechanisms
- Is a major science challenge & may benefit long-range

forecasts
* Barcelona Spain — December 2014

— Attribution is controversial
- Linkages will be regional

- Potential for improving seasonal forecasts
o ——



Wavy Jet Stream
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Proposed Tasks

e Extend observational time series

e Recommend new observations

e Recommend standardized modeling studies

* Coordinate modeling studies-large ensembles and case
studies for identifying physical processes

* Coordinate with other Arctic groups (SEARCH, CIiC, IASC)

A synthesis/review project
a. Review article and/or

b. Journal special issue (early favorite)
©——



Meetings
* Bi-monthly teleconferences

* Annual meeting — first is likely to be held at fall AGU

* Workshop -TBD



Contributions from WG Efforts

« Better understanding of knowledge gaps

e Better use of the observations

e Standardized modeling studies

* Better understanding of the modeled response to AA

Improved climate prediction



Summary

Over the past two decades the Arctic has undergone
rapid and dramatic changes.

Strong warming and large variability in sea ice and snow
cover could be influencing mid-latitude weather.

Many theories/studies argue/show that Arctic variability
influences mid-latitude weather through wave
interference and/or Jet Stream characteristics.

Skepticism remains high due to large natural variability,
short observational record and inconclusive and
ambiguous modeling studies.

The gathering of leading scientists to advance this
complex but important challenge is timely.



Arctic Oscillation (AO)/Polar Vortex

Also known as the North Atlantic Oscillation.

Can be thought of as a metric of how
much mixing of atmospheric masses is
occurring in the atmosphere.

Positive AO/strong polar vortex — little mixing with strong low
pressure/cold air sitting over the pole and higher pressure/warmer
air to the south.

Negative AO/weak polar vortex — strong mixing causes warm air
to rush the Pole and Arctic south spills equatorward



Melting sea and ice and increasing snow cover are contributing to a
weakening of the polar vortex (and more extreme weather).

v'Warming Arctic N s
v'Less sea ice . _
v'"More atmospheric moisture il i
v'Increasing snow cover ﬁ __—”"3’"‘3“‘5?33?“"..2%
v'Decreasing Arctic Oscillation | —
trend/weakening of the polar vortex _

1990 1995 2000 2005 2010

Cohen et al. 2012b



Arctic Amplification — Mid-latitude Weather
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Linkages between Arctic Amplification and

Mid-Latitude Extreme Weather: Arctic
Status of Mechanisms Amplification
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Slower moving more persistent waves has
resulted in greater frequency of heat waves in the

era of Arctic Amplification (2000 to present)
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Internal atmospheric variability IS large  [Russianheatwave of 2010

DJF Atlantic Blocking Frequency

7_.

avg. blocking frequency (per month)

1950 1960 1970 1980 1990 2000 2010

_ 3 blocking identification methods - Decadal variability of blocking frequency is very large, like jet-stream
A CEEEGE variability (the two are dynamically linked)

- 4 reanalyses . .

- 3 different time periods - Behavior over the past decade does not appear exceptional

compared to the long-term variability

Barnes et al. (2014); GRL

CSuU Elizabeth A. Barnes




Recent Trends in NH Circulation Resemble AO
Variability

Polar Night Jet

Stratosphere
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Cohen et al. 2014



- P AT IV e SWaTrHer Arctic but cold Eurasian midlatitude, and extreme cold

winter occurred when ARP went extremely negative phase.
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Boston Annual Snow Fall

Eurasian SCE and Boston Snowfall 1979— 2014
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~ Boston snowfall
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October 2014 Eurasian snow cover is highest since 1979 and so is Boston
snowfall for winter 2014/15.
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