Evaluation of Cloud and Heating Rate Profiles in Eight GCMs Using A-train Satellite Observations

G. Cesana¹, D. E. Waliser¹, T. L'Ecuyer², X. Jiang³

¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ² University of Wisconsin—Madison, Madison, WI, USA ³ Joint Institute for Regional Earth System Science & Engineering, University of California, Los Angeles, CA, USA

Context and Objectives

1. Context

Clouds strongly interact with radiation and modulate the amount of energy reflected, emitted and absorbed by the Earth system. The redistribution of energy within the troposphere has implications for climate prediction, as it impacts the large-scale circulation, the convection and precipitation. While passive sensor satellites have been monitoring outgoing and incoming radiative fluxes at the top of the atmosphere for years (CERES, TRMM), the vertical dimension is still missing and affects our ability to better understand the present climate and the climate response to a global warming as well.

2. Objectives

In this study, we take advantage of two modeling experiments (CMIP5 and GASS-YoTC) and A-train satellite observations (CloudSat/CALIPSO) to assess and characterize the vertical distribution of clouds in eight GCMs and their link with the radiative heating rate

Using the lidar simulator allows:

Direct Comparison of Heating Rates

CloudSat/CALIPSO	8 GASS-YoTC Models
Post-Process	Post-Process
L'Ecuyer et al., 2008 Cesana et al. (in prep)	Jiang et al., 2015 Cesana et al., (in prep)
Observed Heating Rate	- Simulated Heating Rate
2007-2010 day & night	20 years

- All observations / simulations are projected on the same grid - SW heating rate are normalized by SW_{toa} fluxes to reduce uncertainties due to observation time sampling.

profiles.

- Taking into account the instrument limitations - Using the same cloud definition (threshold, grid, sampling)

Method

The multi-model mean (middle) is consistent with the previous results: an excess of highlevel clouds and a lack of low- and mid-level clouds.

The high-level (low-level) cloud bias remains significant in all regime, although it is larger in large-scale convective (subsident) regimes. These results suggest that the cloud parameterization has more influence in the cloud biases than the large-scale circulation.

Heating Rate Profile: Case Study Multi-Model Mean Q_{sw} ITCZ High Clouds The large positive bias in the high-level clouds (black line) generates less LW cooling above 10km and more cooling below 10km (red thin

Zonal Mean Heating Rate Profile

The shortwave heating rate (Qsw) is globally overestimated by the models, which absorb too much solar radiation,

Stratocumulus Region

line).

The relation with the cloud bias below this height is subject to caution as CALIPSO and the simulator lidar do not penetrate farther in these clouds.

In the SW (red dashed-line), the absorption is higher toward the cloud base - where the optical depth is maximum - and then diminishes almost linearly until the ground.

The models produce too many clouds between 8 km and 14 km (up to 5%), generating opposite effects on the LW heating rate bias depending on the cloud height:

too little cooling by 0.2 K/day > 10 kmtoo much cooling by 0.1 K/day < 10 km

In the mid-troposphere (3 - 7 km), the small lack of modeled clouds (1 to 2%) is coincident with a lack of LW cooling (0.1 K/day) and a slight excess of shortwave heating.

In the boundary layer, the significant deficit of clouds (up to 20%) causes a large overestimation of the modeled LW heating rate (2.5 K/day).

Acknowledgements:

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References:

Cesana G. and H. Chepfer, 2013: Evaluation of the cloud water phase in a climate model using CALIPSO-GOCCP, JGR, doi: 10.1002/jgrd.50376

Latitude (°N)

especially in the high-level clouds.

The longwave heating rate (Qlw) bias is quite different depending on the height.

Radiative heating rates are primarily driven by the LW radiation. However, the net bias is globally positive, which means that the cooling is too small in climate models.

Summary

We address systematic biases in the representation of cloud profiles and their effects on the heating rate profiles in recent climate models, using vertically resolved satellite measurements.

- Most climate models simulate too many high-level clouds (1) and too few low-level clouds (2), no matter parameterization is most likely to be the cause rather
- While the excess of high-cloud increases the solar absorption and thus enhance the SW heating, it may generate either too little (>10km (3)) or to much LW

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

Copyright 2015. All rights reserved.

Jiang et al., 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations, JGR, doi:10.1002/2014JD022375 L'Ecuyer et al., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set, JGR, doi:10.1029/2008JD009951