Inverse Estimate of Ocean Mixing from Observations
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1. Mixing In the ocean

The ocean, as we observe it (using ARGO, WOCE, etc), Is the result of an interplay between advection and water-mass transformation. Here water-mass transformation refers
to a change In a water-mass's Absolute Salinity (S,) and Conservative Temperature (©). Water-mass transformation is caused by boundary (mainly air-sea) fluxes of S, and ©

and mixing. Therefore, mixing has an important role in modifying the state of the ocean. Global observations of S, and © are currently more accurate and readily available than
that of velocity.

Here | present a technique that utilizes gridded climatologies based on observations of S, and O distribution to estimate mixing and water-mass transformation, without using
velocities.

2. The World Ocean in (S,,0) coordinates

We study changes In the ocean’s (S,,0) distribution, by representing the ocean in (S,,0) coordinates. All changes in the the ocean’s volume distribution in (S,,0) coordinates

(Figs. 1 and 2), requires a water-mass transformation. For a water-mass transformation salt and heat fluxes are required. Note; advection may lead to a change in the position
of a volume with a particular (S,,0), but it does not change the (S,,0) values itself and therefore its effect does not show up in (S,,0) coordinates.

The ocean’s S, and O distribution at different depths L og of the Volume distribution
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Fig. 1; Distribution of ocean basins in (S,,0) coordinates. Fig. 2; The °Log of the world ocean volume distribution in Fig. 3; Thermohaline forcing leading to displacement of fluid
(S, ©) coordinates. parcels in (S,,©) coordinates.
3. Diathermohaline streamfunction 4. The results
For a steady state ocean, the volume transport In The obtained water-mass transformations (Fig. 5) and | | |
(S,,©) coordinates is non-divergent (trends can be resulting Diathermohaline Streamfunction (Fig. 6) are NS TN )
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The Diathermohaline Streamfunction is directly forced observed studies (Table 1). However, the mesoscale
by salt and heat fluxes due to air-sea fluxes and mixing isopycnal mixing (K, in the interior layer) Is a first of a kind ol e
(Fig. 4). The mixing term however, contains unknown estimate which is up to 2 orders of magnitude smaller than hg
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Fig. 4; Some of the mathematical details of the Thermohaline Inverse Method surface forcing and mixing. These processes drive the circulation in (S,,©) coordinates. The
(THIM). arrows indicate direction of flow.

5. Can Isopycnal mixing be so small?

Errors are due to averaging processes, irregular and limited spatial and temporal resolution and imperfect mixing structure functions. Effects of solar penetration depth,
geothermal heating or Brine rejection are not included, and the choices of column and row weighting influence the results. In our opinion it is unlikely that improvements can
Increase K by a factor 100. K is well constrained in (S,,0) Coordinates, and such an increase will lead to unrealistic water-mass transformation (Fig. 5d and 5h).

Therefore we conclude that the interior small scale diffusion is much smaller than currently thought and applied in models. Future work should focus on improve
the mixing estimates* and on understanding the impact of a small isopycnal mixing, for ocean modeling. *Not discussed on poster. Discuss with presenter.



