Isopycnal Mixing and Ventilation Controlled by Winds
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Mesoscale Fluxes

Mixing Dependence on Winds

Eddy Resolving Process Model

To understand how mesoscale fluxes might evolve in a changing climate, we use a
high-resolution, idealized process model meant to qualitatively reproduce the We diagnose isopycnal mixing rates by releasing a passive tracer and applying the
Southern Ocean overturning circulation. While simplified, this model explicitly method of Nakamura. Results show a strong increase of Kreqi with stronger winds.
resolves mesoscale turbulence, providing an important guide for parameterization

and theoretical analysis. °

Mesoscale turbulence transports stuff (e.g. heat, salt, disolved chemicals,
etc.) through the ocean in significant quantities. The scales of mesoscale
eddy transport (~10 km - 200 km) are generally not resolved by climate
models. The fluxes must therefore be parameterized through subgrid
schemes.
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The mesoscale flux of a tracer c is parameterized through two distinct Model Configuration
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Eddy-induced advection represents the fundamentally advective

(variance conserving) part of the eddy flux. Related to the “skew flux”
and the “bolus correlation.” Part of the meridional overturning
circulation. Proper representation of this component is crucial for
accurate simulations, and many studies have shown its importance for a
wide range of climate problems, particularly in the Southern Ocean.
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Parameterized through the Gent-McWilliams scheme:
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