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CalWater 2 / ACAPEX - Aerosols |
Emerging research has identified two phenomena Observational Strategy - Microphysics Ship-Based Facilities: Department of Energy Atmospheric

that play key roles in the variability of the water Jan - Mar 2015
supply and the incidence of extreme precipitation
along the U.S. West Coast. These phenomena
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(2) Aerosols—from local sources as well as those
transported from remote continents—and their
modulating effects on western U.S.
precipitation.
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Dettinger et al., 2011).

Expected outcomes for CalWater 2 include:

« Distribution of an unprecedented meteorological,
microphysical, and chemical dataset collected in AR
environments both onshore and offshore for advancing
understanding and prediction of aerosol effects on
precipitation, and

« Development of decision support tools for extreme NQAAG-IV
precipitation events, hazard response, and water supply Calwater 2 Conceptual FrameWOrk A”’t“de<~ .

for more effective water resources management.
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produce hydrological hazards and supply valuable water
resources.
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PTG Aoy, Welor Cliasy Observations are also proposed for subsequent winter seasons as
part of a 5-year broad interagency vision to address the CalWater 2
science objectives.
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Observations from CalWater and ACAPEX present a unique opportunity for physical process validation in both traditional weather/climate model and chemical transport
model / cloud microphysics simulations. Observations on-board the NOAA WP-3 and Gulfstream-4 aircraft were designed to work in concert with sea surface
AY2008-APR2014 | 2 measurements on board the NOAA R/V Brown to estimate the atmospheric water vapor budget during AR storms. Single particle chemical mixing state and aerosol size
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Average number of AR days per week from 1
November to 31 March for 2003-2012. Courtesy

of G.A. Wick, NOAA Earth System Research
Laboratory.
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