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(black curve). (b) Winter-
time submesoscale overturning due to wind-driven processes (blue) and due to mixed layer
baroclinic instability (green). In both cases, the buoyancy flux is expressed as an equiva-
lent heat flux for comparison with the surface heat flux: Q
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(11). (c) Sum
of the total surface buoyancy forcing, wind-driven processes and mixed layer instability:
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+ Q
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(red), expressed as an equivalent heat flux. The gray blocks
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Fig. 1. (a) Snapshot of sea surface temperature (SST, �C) on 1 September, 2012. The
white box indicates the site of the OSMOSIS study region. (b,c) An expanded view of
SST (�C) and SST gradient (10�5 �C m�1) from the same day. The boxes represent the
OSMOSIS study region. (d) Bathymetry (m) at the OSMOSIS site. The mooring locations
are indicated by the white circles. (e) Heat map showing the number of dives in a 0.01�

longitude and latitude grid, as visited by gliders SG566 (fall), SG502 (winter) and SG566
(spring/summer).
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Fig. 1. (a) Snapshot of sea surface temperature (SST, �C) on 1 September, 2012. The
white box indicates the site of the OSMOSIS study region. (b,c) An expanded view of
SST (�C) and SST gradient (10�5 �C m�1) from the same day. The boxes represent the
OSMOSIS study region. (d) Bathymetry (m) at the OSMOSIS site. The mooring locations
are indicated by the white circles. (e) Heat map showing the number of dives in a 0.01�

longitude and latitude grid, as visited by gliders SG566 (fall), SG502 (winter) and SG566
(spring/summer).
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The importance of submesoscale instabilities, particularly mixed-layer baroclinic instability 
and symmetric instability, on upper ocean mixing and energetics has been well 
documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf 
Stream (D’Asaro et al. 2011).  Less attention has been devoted to studying submesoscale 
flows in the open ocean, far from long-term mean geostrophic fronts, which characterizes 
a large proportion of the global ocean.  We present a year-long, submesoscale-resolving 
time series of near-surface buoyancy gradients, potential vorticity and instability 
characteristics, collected by ocean gliders, that provides insight into open-ocean 
submesoscale dynamics over a full annual cycle.  The gliders continuously sampled a 225 
sq. km region in the subtropical northeast Atlantic, measuring temperature, salinity and 
pressure along 292 short (~20 km) hydrographic sections.

Glider observations show a seasonal cycle in near-surface stratification.  Throughout the 
fall (September through November), the mixed layer deepens, predominantly.  During 
winter (December through March), mixed layer depths are variable, and estimates of the 
balanced Richardson angle, the ratio of lateral and vertical buoyancy gradients, depict 
conditions favorable to symmetric instability.  The relative importance of mixed layer 
instabilities on the restratification of the mixed layer, as compared with surface heating 
and cooling, shows that submesoscale processes can reverse the sign of an equivalent 
heat flux up to 25\% of the time during winter.  These results demonstrate that the open-
ocean mixed layer hosts various forced and unforced instabilities, which become more 
prevalent during winter, and emphasize that accurate parameterizations of submesoscale 
processes are needed throughout the ocean.

Figure 1.  (a) Snapshot of 
sea surface temperature 
(SST, °C) on 1 September, 
2012. The white box 
indicates the site of the 
OSMOSIS study region. 
(b,c) An expanded view of 
SST (°C) and SST gradient 
(10-5 °C m-1) from the same 
day. The boxes represent 
the OSMOSIS study region. 
(d) Bathymetry (m) at the 
OSMOSIS site. The 
mooring locations are 
indicated by the white 
circles. (e) Heat map 
showing the number of 
dives in a 0.01° longitude 
and latitude grid, as visited 
by gliders SG566 (fall), 
SG502 (winter) and SG566 
(spring/summer).

Figure 2.  Typical time series of (top) temperature and (bottom) salinity from the 
OSMOSIS deployment.  Variations in temperature and salinity are strongly 
compensated.  Each glider completes one dive every four to five hours.  A 
complete circuit around the butterfly pattern takes approximately three days.
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Submesoscale processes may influence the depth and stratification of the ocean surface boundary layer (Capet et al. 2008).  Previous observational programs have considered 
regions with strong frontal currents, such as the Gulf Stream and the Kuroshio, where conditions are favorable for submesoscale instabilities (D’Asaro et al. 2011). Here, we examine 
hydrographic data from the OSMOSIS field program in a region characterized by a weak mean flow to explore the contribution of submesoscale motions to upper ocean stratification.

Filamentation caused by mesoscale stirring induces a range of dynamic instabilities that have distinct seasonal characteristics.

Figure 1.  (a) Snapshot of sea surface temperature from the northeast Atlantic Ocean on 
September 1, 2012.  The small white box shows the OSMOSIS study region located at the 
Porcupine Abyssal Plain (PAP), approximately 20 km x 20 km.  (b) The location of nine 
OSMOSIS moorings located at the PAP site.  The color shows the local bathymetry in 
meters.  (c) Heat map showing the frequency of sampling by three ocean gliders deployed 
between the end of August 2012 and the beginning of September 2013.  The region was 
sampled continuously by the gliders during this period.

Figure 2.  Typical time series of (top) temperature and (bottom) salinity from the 
OSMOSIS deployment.  Variations in temperature and salinity are strongly 
compensated.  Each glider completes one dive every four to five hours.  A 
complete circuit around the butterfly pattern takes approximately three days.

Even in regions where sustained frontal gradients in hydrographic properties are 
absent, mesoscale stirring generates strong mixed-layer lateral buoyancy 
gradients, which may induce symmetric instability.

At the OSMOSIS site, gravitational instability is most prevalent during the late fall as 
the mixed layer deepens.  This is likely supported by a persistent down-front wind 
orientation with regard to surface SST and buoyancy fronts.  Mixed layer variability 
is greater in the winter when symmetric instability is more prominent.  Mixed layer 
instabilities are abruptly reduced spring as the mixed layer shoals.
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Figure 4.  Time series of the mixed-layer-depth fraction exhibiting 
conditions favorable to various instabilities, as summarized by the 
Richardson angle ɸRi:  (top) fall, (middle) winter and (bottom) spring/summer.  
The Richardson angle is given by the boxed equation (Thomas et al. 2013).  
The remainder of the water column is stable.  Only the data from the 
diagonal crossings of the site are considered here (~300 sections).

Figure 3.  Typical hydrographic section showing conditions favorable for symmetric instability.  (a) Sea 
surface temperature (MUR SST) on December 3, 2012 (day 93).  (b) Temperature section as measured by 
the saw-tooth glider pattern and optimally interpolated onto a grid.  (c) Salinity section as measured by 
the glider and optimally interpolated onto a grid.  (d) Upper ocean buoyancy b (m s-2) showing a strong 
lateral buoyancy gradient throughout the mixed layer.  (e) Ertel potential vorticity (PV, s-3, see boxed 
equation below); the white contour indicates the 0 PV isoline.  (f) Ratio of the vertical and horizontal 
components of the PV; the scale is logarithmic such that 2 implies that horizontal gradients of buoyancy 
are two orders of magnitude larger than fN.

PV = (f +r⇥ u) ·rb ⇡ fN2 �M4/f

b = �g (⇢� ⇢0) /⇢0; N2 = b
z

; M2 = b
x
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Figure 5.  Time series of (possible) mixed-layer preconditioning by surface wind forcing.  (Top) Surface 
wind orientation over the OSMOSIS site (blue) from ECMWF reanalysis.  The cyan curve shows the 
orientation of the largest SST gradients in the domain, when these exceeds 0.025 ℃/km.  (Middle) 
Time series of wind speed (blue) and SST gradient amplitude at the OSMOSIS site.  (Bottom).  The 
black dots show the orientation of the winds relative to SST gradients with 1 (-1) indicating down-front 
(up-front) wind forcing.  Values less than 0.5 are not shown.  Time series of the relative magnitude of 
the Ekman buoyancy flux (Thomas 2005); positive values indicate down-front winds and thus negative 
buoyancy forcing.
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Figure 3.  Year-long time series of potential vorticity (10-9 s-3) calculated from the 
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Submesoscale processes may influence the depth and stratification of the ocean surface boundary layer (Capet et al. 2008).  Previous observational programs have considered 
regions with strong frontal currents, such as the Gulf Stream and the Kuroshio, where conditions are favorable for submesoscale instabilities (D’Asaro et al. 2011). Here, we examine 
hydrographic data from the OSMOSIS field program in a region characterized by a weak mean flow to explore the contribution of submesoscale motions to upper ocean stratification.

Filamentation caused by mesoscale stirring induces a range of dynamic instabilities that have distinct seasonal characteristics.

Figure 1.  (a) Snapshot of sea surface temperature from the northeast Atlantic Ocean on 
September 1, 2012.  The small white box shows the OSMOSIS study region located at the 
Porcupine Abyssal Plain (PAP), approximately 20 km x 20 km.  (b) The location of nine 
OSMOSIS moorings located at the PAP site.  The color shows the local bathymetry in 
meters.  (c) Heat map showing the frequency of sampling by three ocean gliders deployed 
between the end of August 2012 and the beginning of September 2013.  The region was 
sampled continuously by the gliders during this period.

Figure 2.  Typical time series of (top) temperature and (bottom) salinity from the 
OSMOSIS deployment.  Variations in temperature and salinity are strongly 
compensated.  Each glider completes one dive every four to five hours.  A 
complete circuit around the butterfly pattern takes approximately three days.

Even in regions where sustained frontal gradients in hydrographic properties are 
absent, mesoscale stirring generates strong mixed-layer lateral buoyancy 
gradients, which may induce symmetric instability.

At the OSMOSIS site, gravitational instability is most prevalent during the late fall as 
the mixed layer deepens.  This is likely supported by a persistent down-front wind 
orientation with regard to surface SST and buoyancy fronts.  Mixed layer variability 
is greater in the winter when symmetric instability is more prominent.  Mixed layer 
instabilities are abruptly reduced spring as the mixed layer shoals.
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Figure 4.  Time series of the mixed-layer-depth fraction exhibiting 
conditions favorable to various instabilities, as summarized by the 
Richardson angle ɸRi:  (top) fall, (middle) winter and (bottom) spring/summer.  
The Richardson angle is given by the boxed equation (Thomas et al. 2013).  
The remainder of the water column is stable.  Only the data from the 
diagonal crossings of the site are considered here (~300 sections).

Figure 3.  Typical hydrographic section showing conditions favorable for symmetric instability.  (a) Sea 
surface temperature (MUR SST) on December 3, 2012 (day 93).  (b) Temperature section as measured by 
the saw-tooth glider pattern and optimally interpolated onto a grid.  (c) Salinity section as measured by 
the glider and optimally interpolated onto a grid.  (d) Upper ocean buoyancy b (m s-2) showing a strong 
lateral buoyancy gradient throughout the mixed layer.  (e) Ertel potential vorticity (PV, s-3, see boxed 
equation below); the white contour indicates the 0 PV isoline.  (f) Ratio of the vertical and horizontal 
components of the PV; the scale is logarithmic such that 2 implies that horizontal gradients of buoyancy 
are two orders of magnitude larger than fN.

PV = (f +r⇥ u) ·rb ⇡ fN2 �M4/f

b = �g (⇢� ⇢0) /⇢0; N2 = b
z

; M2 = b
x

�RiB ⌘
✓
� |rhb|2

f2N2

◆

Figure 5.  Time series of (possible) mixed-layer preconditioning by surface wind forcing.  (Top) Surface 
wind orientation over the OSMOSIS site (blue) from ECMWF reanalysis.  The cyan curve shows the 
orientation of the largest SST gradients in the domain, when these exceeds 0.025 ℃/km.  (Middle) 
Time series of wind speed (blue) and SST gradient amplitude at the OSMOSIS site.  (Bottom).  The 
black dots show the orientation of the winds relative to SST gradients with 1 (-1) indicating down-front 
(up-front) wind forcing.  Values less than 0.5 are not shown.  Time series of the relative magnitude of 
the Ekman buoyancy flux (Thomas 2005); positive values indicate down-front winds and thus negative 
buoyancy forcing.
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Figure 4.  Summary of mixed layer instabilities throughout the entire year. The time series is 
divided into (top) fall (middle) winter and (bottom) summer time periods. Each bar represents a 
period of a tenth of a day. The bars show the percentage of the mixed layer that shows 
conditions favorable to (blue) gravitational instability, (orange) mixed gravitational/symmetric 
instability and (green) symmetric instability. Conditions for each of these cases is based on 
calculation of the Richardson angle (boxed equation, Thomas et al. 2013).  Values are only 
provided where the mixed layer depth is greater than 20 m. Regions that are not covered by 
the bars indicate stable conditions, e.g. PV > 0. The solid curve in each panel shows the 
mixed layer depth (m) according to the inverted ordinate on the right hand side.

Figure 5.  (a) Winter-time surface heat flux (red), freshwater flux (blue), expressed 
as an equivalent heat flux, and the sum of these two (black). (b) Winter-time 
submesoscale overturning due to wind-driven processes (blue) and due to mixed 
layer baroclinic instability (green), expressed as an equivalent heat flux 
(Mahadevan et al.2012).  (c) Sum of the total surface buoyancy forcing, wind-
driven processes and mixed layer instability, (red), expressed as an equivalent heat 
flux. The gray blocks indicate time periods where more than 15% of the mixed 
layer depth has an unstable vertical buoyancy stratification. The black curve 
shows the surface heat flux as in panel (a) for reference.

Figure  6.  Cumulative 
distribution function of 
the winter-time 
surface heat flux 
(black), equivalent 
heat flux from the 
Ekman buoyancy flux 
(blue), equivalent heat 
flux from mixed layer 
instabilities (green) and 
the sum of these three 
(red). These values are 
the same shown in 
Figure 5.
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