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How do we improve process representation in ocean
climate models?

Climate process teams: multi-institutional collaborations between Pls
iInvolved in observational and numerical process studies and building and
running climate models.
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The Gravity Current Entrainment Climate
Process Team
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A US CLIVAR project funded by 3 postdocs at GFDL, WHOI, Miami; 1 NCAR staff scientist
NSF and NOAA, 2003-2008. Annual workshops



Gravity current entrainment CPT products
I. Synthesis of observations
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“Table of observations” : easy-to-

reference parameters of major overflows.
(Legg et al, 2009, BAMS)



Gravity current entrainment CPT products
Ii. New mixing parameterizations

« Shear-driven mixing: Xu et al, 2006 (HyCOM), Jackson et al, 2008
(GOLD, MOM6)

« Bottom boundary mixing: Legg et al, 2006 (GOLD, MOM®6)
Combines insights from observations and process simulations to improve
parameterization of near boundary mixing.
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Gravity current entrainm

ent CPT products

. New representations of flow through
narrow straits

Partially open barriers for sub-

grid-scale straits (Legg et al 2009,
Adcroft 2014)

Marginal Sea Boundary
Condition: (Price and Yang
1998) adapted for CCSM
Danabasoglu et al 2010
Includes parameters from Table
of Observations

Reduces spurious mixing in z-
coordinate models

MSBC implemented in HYCOM
(Bozec et al, 2011)
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Legacies and impacts of GCE-CPT

« CCSM and ESM2G IPCC AR5 models and
MOM®G6 include new CPT parameterizations

 New parameterizations impact AMOC, AABW,
surface Atlantic climate

Without overflow
parameterization

depth (km)

With overflow
parameterization

depth (km)

Yeager and Danabasoglu, 2012



The Internal-wave driven mixing CPT

(image credit: Amy
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Goal: an energetically-
consistent
parameterization of
spatially- and
temporally-varying
diapycnal mixing due to
iInternal waves.
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Total dissipation, D [W m_2]

lwave mixing CPT products
I. Synthesis of observations
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Observations provide constraints on GCM parameterizations



lwave mixing CPT products

Il. New parameterizations

* Near-inertial wave-driven mixing in thermocline (CCSM:
Jochum et al, 2013)

* New vertical profile for local internal tide dissipation (MOM6:
Melet et al, 2013; and CCSM)

* Lee-wave-driven mixing (MOM6: Melet et al, 2014,2015a)

« Estimates of local fraction of dissipation, wave propagation

and far-field dissipation: ongoing (Ansong et al, 2015; Mater et
al, 2015; Sun et al, 2015, Melet et al, 2015b).
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Thoughts for discussion

Ocean CPTs have led to improved representation of physical
processes in multiple IPCC-class climate models which would
not have happened without involvement of process study

scientists.

Synthesis of existing observations is a vital component to
guide parameterization development; results motivate follow-
on observations (e.g. Samoan Passage, Ttide)

End results cannot always be foreseen at proposal-writing
time.

“Shovel-ready” parameterizations lead to early progress.

S year timeline: 3 years to demonstrate potential, 2 years to
work out details
— too short to bring ideas to fruition, including testing in climate models?
— too long to keep everyone fully engaged?

How to maintain engagement between annual workshops?



