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GEWEX PROES - Process Evaluation Studies (under
development)

This grew out of the 2014 obs4dmip meeting where participants
felt the issue of using obs more intelligently to probe process
understanding was missing in obs4dmip II

PROES is developing into a WCRP cross cut activity

Upper Tropospheric Clouds & Convection (UTCC) lead Stubenrauch
and Stephens

Ice mass balance (lead Larour, Sophie Nowicki), GEWEX with CLiC
Radiative Kernels for Climate (lead Soden)

Mid-lat storms (lead Tselioudis, Jakob)

Soil moisture climate (lead Sonia Seneviratne)

PROES is about using observations to examine processes and
my talk today underscores aspects of this CPT-like mentality

-~ applied to low, warm clouds



Global Water-Energy balance dilemma

Water and energy don’t balance - To achieve a balance we are forced to make
adjustments to our best estimate fluxes

At the TOA this is done wrt the observed ocean heat uptake (e.g. Loeb et al., 2012)

At the surface, two philosophical pathways have been followed

1) Small adjustment to turbulent fluxes — Big decrease to radiation - what is the missing
sink of radiant energy?

2) Big increase to turbulent fluxes- Small adjustment to radiation - where is the missing
source of water?
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C|Oud ) | bedQ Largely microphysics perspective
Twomey (1976) introduced

T=C1W2/3N1/3h

Stephens (1978) introduced
LWP

1 7=C,

r

e

“Ship tracks have been
called the Rosetta Stone of
aerosol-cloud-climate

@ interactions because they =~ B s
-l serve as a striking example | 8
of the effects of increased
CCN on the albedo of
marine stratiform clouds.”
Ackerman et al., (1995)
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»»»»»



Indirect Effect Schematic Diagram for Warm & Cold Clouds
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Cloud Albedo
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Differences in liquid water path primarily determine the strength and sign
of the aerosol indirect effect.

Humidity above cloud tops is responsible for the differences in LWP.
E-PEACE results are in general agreement with A-Train observations.

Chen et al. (2013)

n R,, LWP, H)



Does suppressed drizzle lead to liquid
increased water path?

(as suggested by Albrecht, [1989], and many others...)
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Christensen and Stephens (2012)

Answer: rarely, in less than 10% of
ship tracks.

- Suggests more entrainment into

polluted clouds resulting in less
LWP and drizzle.

How often is rainfall suppressed?
Answer: 72% of the time

Closed Cells: 85% & Open Cells: 50%

To what extent is cloud albedo
affected by these processes?




Global A-Train Observations

Liquid Water Path Response

LTS (K)
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Chen et al. ( 2014 ) dLWP/dIn(Al) (g m-2)

4 years of collocated A-TRAIN
observations using CERES, MODIS,
CALIPSO, and CloudSat instruments.

Over 5 million carefully screened
retrievals (single layer low-level warm
phase cloud) 60°S to 60°N.

Aerosol (MODIS) properties are averaged
over 1° regions.

Results

*  Entrainment/drying effect is largest in dry
and unstable conditions.

— Consistent with ship track assessment
and the LES simulations performed by
Ackerman et al. (2004) & Chen et al.
(2011).

Co-variability of LTS and RH,, buffer the
liguid water path response to increasing
aerosol concentration.

How do aerosol changes on cloud

LTS: Lower Troposphere Stability (LTS = ©540..0 ~ Osurface)

RH;,: Free-troposphere Humidity (relative humidity above cloud top)
LWP: Liquid Water Path (MODIS)

Al: Acrosol Index (MODIS)

properties and cloud fraction
impact the global aerosol indirect
forcing?




Insight into cloud to rain processes

Continuous collection model
dR B Eth (R)
dt 4p., 1

dh =-V (R)dt

L. b
dR E =30 20 -10 0
Radar Reflectivity [dBZ]
—_— = - R21=28-30micron
dh 40 S,

%

N

:
\)

az,

-10
Radar Reflectivity [dBZ)

Suzuki et al. (JAS 2010)

The slope in CFODD 1s a gross measure of drop collection efficiency £..




Rain/drizzle
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Method: Contour Frequency of Optical Depth Diagram (CFODD)

Cloud top particle size
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Method: Contour Frequency of Optical Depth Diagram (CFODD)

cloud top particle size

5-10um 10-15um
As clouds age, cloud
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top particles grow
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Method: Contour Frequency of Optical Depth Diagram (CFODD)

cloud top particle size

5-10um 10-15um

cloud cloud drizzle As cloud-s age, cloud
0 | top particle grows
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Obs versus global GCMS

(a) A-Train/rg=5-10um (b) A-Train/ry=10-15um (c) A-Train/rg=15-20um (d) A-Train/r,=20-25um
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This is an example of PROES-like use of observations to probe processes



One example of process influence on model

(a) A-Train (b) reyii=6.0um

GISS (obs) - =10.6
HadCRUT3 (obs) | Vi LV-OUIM 20

0
Z, [d8Z] Z, [dBZ)

(C) rey=8-2um (d) r.,=10.6um

cnt

el
Z,[dBZ) Z, [dBZ]
Golaz et al v" Historical temperature change simulations are sensitive to the
(2013) details of how warm precipitation is triggered
v" The most realistic warm rain initiation produces the worst
simulation.

v Small changes in reflected energy appear to force a transition
into a different regime that appears to be triggered by the Mt
Agung eruption in early 1960s.



Land versus ocean contrasts in
Cloud-to rain processes

Hanii Takahashi (in prep)




Results: Land-Ocean Differences in CFODD
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Results: Land-Ocean Differences in CFODD

cloud top particle size
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Results: Land-Ocean Differences in CFODD

cloud top particle size
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Hypothesis: The land-ocean differences are due to the land-ocean differences in the
intensity of updrafts

Ocean Land

cloud mode drizzle mode rain mode cloud mode drizzle mode rain mode

LN o, >
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1 1 I 1

1 1 l
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Test : ARM Ground-Based Measurement (and cloud model simulation)

Vertical velocity )

0-0.2 (m/s) 0.2-0.4 (m/s) o 4-0.6 (m/s) 0.6-0.8 (m/s)

6

4

2
0% 0% 02%0

0
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o

20

Cloud Depth
[%/dBZ]

»* ARM Cloud Radar has Doppler velocity.

2 “Drizzle gap” starts to appear when
vertical velocity is stronger.



Summary& closing comments i

B L

The radiative properties of clouds are primarily shaped by S
their macrophysical properties.

Direct microphysical influences seem to be smaller and
subtlely play out through influences on macrophysical
adjustments.

Anecdotally, the way cloudy air moves and mixes with its
environment seems to be a dominant control of these macro-
properties and thus to cloud-radiation-aerosol properties.

We have some tools to probe cloud-radiation processes in
growing detail that clearly impact model development, and
more are to be developed under PROES. Ironically, the 8000Ilb
gorilla is convection and our ‘obs-based process tools” are
pr|m|t|ve




Multi-sensor Advanced Climatology for Liquid
Water Path (MAC-LWP)

Input Sensors

Lani Upcistest | T-Fab-2014

Fosstprim
Praafosm [ e (LT Crlit (k)

FE
FI0 LWIP(Y . 1) = LWPRLY)) + A, cosair, — 7))

F1l

Fi3

Fi4
S5MA Fi3s
AN

+ As cos2elr — T5) + nr),

15H-E Aqgra
TEMM

Benefits
1. Consistent inter-calibrated input data set
- Based on Remote Sensing Systems Version 7 water path retrievals. SSM/I , AMSR-E, AMSR2, and TMI
- Satellites are Inter-Calibrated at the radiance level
- Common algorithm applied to all sensors with only minor variation in channel set.
2. No systematic regional/diurnal sampling biases (unlike optical)
33 Fit procedure accounts for diurnal and semi-diurnal cycle to remove the effects of orbital drift. Assumes that diurnal
cycle is stationary
4, Explicit uncertainty estimation
Limitation
1. Must be bias corrected. Precipitation related biases are particularly difficult. (ongoing work)

Monthly Means .

{n) Jsnusry

Diurnal Cycle Lebsock, Teixeira, ODell, Elsaesser,

Meas LWP [ghm’]



The resulting climate data record — Elsaesser et al., 2014; Lebsock et al., 2104 (in prep)
Cloud Liquid Water Path Trends

Global Oceans cLWP Record 205N, 69.5W cLWP Record

Slope: 0.084 g m? yr’

1 1 1

1995 2000 2005
Year

Cloud LWP Trend (1988 - 2013)

% decade”’

-

pe: 041 gy 10 Wm?2
2 Wm™
(LWP~
250-260)

Slope: 0.221 gm?* yr” 9 [ ] : Slope: -1.048 gm? yr'




Testing Our Hypothesis Il : Model Simulation
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drizzle
rain |
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“» Particles start to fall sooner over weak updraft.

**  Physical model confirmed the nature of the “drizzle gap”.




Takahashi et al., 20015 in prep
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Instead of using effective radius, we can see the cloud-drizzle-precip process
by using velocity (0.5 m/s bin)

v=0-0.5 m/s
cloud

v=0.5-1.0 m/s .
cloud to drizzle

v=1.0-1.5m/s .
drizzle

v=1.5-2.0 m/s

drizzle to precip
v=2.0-2.5 m/s

v=2.5-3.0 m/s

v=3.0-3.5 m/s

precip

v=3.5-4.0 m/s

-20 -10 0 10
Reflectivity [dBZ]
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Wavelength [um]

Model
CERES
FLXHR-LIDAR (L3)
NCEP re-analysis

Transmission [%]

_ -~ Wavelength [um]
115

Transmission [9%]

1000
Wavenumber [cm’

Mid IR, A< 15 pm 4

IR Cooling Rate [K /day /cm '] x 107




Challenge 2: The Far IR (e.g. Harries et al.,
2009;Rev. Geophys., 46, RG4004, doi:

45-59% of energy
emitted from Earth
occurs at FIR
wavelengths —and a
even greater fraction of
the energy change
associated with warming
comes from FIR

We have very few (anecdotal) measurements of FIR radiation
properties and our understanding of these properties (surface
emission, spectral absorption including continuum, cloud
properties,...) is mostly untested. Simply extrapolating from MIR
knowledge is problematic (e.g. Feldman et al., 2014)



AF « b(COT)AIn N, radiative response (forcing)
b(COT)=-b(CDR)+ b(LWP)
dIn X

h(X) = X = (CDR,COT,LWP)

dInN,
COT =7,CDR = F, T. Nakajima (per comm)
0.2 — B R e e 3
non'g:mg : [ Lifetime regime Tﬂﬂﬁ' ]
Twomey
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\_E o () 0.10 regime
© 005} ® ® - | Matsui06,S
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g | Mixed phase,
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0 - - - oo NCAM ship track study
-0.2 -0.15 -0.1 -0.05 0 0.00beTiiitrino gl ) L

To reiterate, processes that govern the water budget of clouds
determine the aerosol indirect effect & getting the cloud to
rain transition right is a critical step toward getting these

effects right, e.g. Suzuki et al., 2014; Golaz et al., 2013
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Mostly from greater
aerosol amounts of NH




SH-NH Surface

SH-NH Atmospheric
contribution
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The observed slight hemispheric asymmetry (SH >NH ~ 0.6Wm-2
and mostly in OLR) implies a SH to NH net transport - the

atmosphere pumps heat one way(NH-SH) and the oceans the other
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A grand challen:
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Closing Remarks:

Observations, cc
Models - Higher resolution & conve
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2) Regional changes: The wet wetter and dry drier
(WWDD) paradigm

mme = Rising High Clouds

Broadening of the Hadley Cell

IPCC AR5,Ch 7

Narrowing of Tropical Ocean Rainfall Zones
o ¢ Rising High Cloudsi
m

A Rising of the Melting Level 4/‘_,4)Poleward Shift of Storms

Less Low Clouds A More Polar Clouds
)T - iy




Oceans




Wet wetter/dry drier is far too simplistic a description of
water change

- Dry gets drier .

V.

b

f 3
I Oy gets wetter "4",., |
I:l Trans gets drier ‘.
|:| Trans gets wetter ’hp

2, DDWW confirmed
I Wet gets crier DOWW invalid [T 1]

-Wet gets wetter 0 10 20 30 40 50 60.70
Percentage of area with change




Super CC
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The hemispheric balance/imbalance and the main tropical rainbelts
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A grand challen:
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Two concepts Clouds -radiation =» convection feedbacks

Fii. 2. Schematic of cloudiness in the cloud cluster disturbance and its environment.
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Climate sensitivity and the IRIS effect

Strong OLR Weak OLR

ECHAMSE @
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G A A A o A -5.0 -4.0 -3.0 -20 -10

Total feedback (W m2 K™

Figure 1 | llustration of the tropical atmospheric circulation.




GEWEX PROES UTCC (Stubenrauch (LMD and
Stephens)

relate convective strength to properties of high clouds
Test hypothesis that majority of UT heating is from thinner clouds
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The SGE in CMIP5 1%/yr experiments
Clear-sky OLR differences [<136-140> - <0-4>]
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R>50 mm/day

-—- 10<R<50 mm/day
1<R<10 mm/day
R<1 mm/day

— Total

2 3 4 5 6
Percentage Occurrence (per km bin)

Precipitating Cloud Top Height (km)
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— Total
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Annual zonal average SW bias ocean south of 50°SH
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Difference fycq - CERES-EBAF 50N-S Mean err 1,27 50N-S rms 9.35 Difterence g4wl - CERES-EBAF S0N-5 Mean err 0.0433 S50N-5 rms 9.39
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Evidence of Cloud Deepening
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Distance (km)
Open cells: 16% increase in cloud top height,
+42% increase in liquid water path

Christensen and Stephens (2011)
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Closed cells: no change in cloud top height,
6% decrease in liquid water path




Global Aerosol Indirect Forcing

Sensmwty

¢ " Global mean —_— ~ T, Indirect Forcing Estimates:

* Intrinsic = -0.49%0.33 W/m? 2
N. Hemisphere + Extrinsic = -0.460.31 W/m? => -0.95W/m

S. Hemisphere Summar"

*Environmental condition and cloud type exert strong
controls on the aerosol indirect effect sensitivity at both
Raining local (e.g., ship tracks) and global scales.

Non-raining

*For observational studies: it's imperative to isolate
aerosol indirect effects by environmental conditions
Moist/unstable and, improve cloud albedo, aerosol, precipitation rate,
and infrared sounding retrievals.

Moist/stable

*For modeling studies: feedbacks involving entrainment,
drizzle, and surface coupling should be incorporated
. -3 5 into GCM's to improve estimates of the aerosol indirect
Intr|n5|c aerosol cloud radlatlve forcing (W m~2) forcmg.

Chen et al. (2014), Nat. Geosci.
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m( dA,, dAy ) (A o — A ) — L _|F Cqw: Shortwave Cloud Forcing (CERES)
dIn(Al) d ln(AI ) dIn(Al) A, clear-sky albedo (CERES)
’ \ A4 cloudy sky albedo (CERES)
¢;: cloud cover fraction over CERES footprint
intrinsic effect extrinsic effect ¢, annual mean marine warm cloud coverage
aerosol changes on cloud impact of aerosol on AT Aerosol index (MODIS)

properties cloud fraction




Aerosol-lce Cloud Interactions
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Frequency of Ice Phase Retrieval

Aerosol Glaciation Effect Observed in Ship
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Diesel-powered ship burning low-grade
marine fuel oil (Agrawal et al., 2008)

Frequency of ice clouds increase as cloud top temperature decreases.

Local maximum ice frequency occurs at -10°C.

— Secondary ice production by the Hallett and Mossop (1974) mechanism is efficient between
-10°Cto -4°C.

Polluted clouds contain more ice (¥15% increase in lidar observations) than adjacent clouds.

— Local increase in ice nuclei from ship exhaust (~25%) enhances contact & immersion freezing of
cloud drops.



Aerosol Glaciation Effect Observed in Ship
Tracks
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Radar reflectivity is strongly influenced by the size/number of precipitation-sized particles.

Aerosol effect on suppressing precipitation decreases with cloud top temperature.
— More ice in polluted clouds invigorate particle growth and precipitation rates.

Total water path is significantly depleted in mixed-phase clouds due to the glaciation
indirect effect.




Indirect Effect Responses for
Warm and Mixed-phase Clouds

Differences: polluted — unpolluted

effective radius (AR./R) cold Cloludéotp
warm cloud top

optical depth (At/x)

total water path (AW/W)

radar reflectivity (AZ./Z,)

Fractional Change (%)

Main Result

1) Liquid clouds are 5 times more susceptible
to increases cloud albedo and . . .

2) persist ~“2hours longer than mixed-phase
clouds.

— This suggests that aviation aerosol alters
the properties of mixed-phase clouds
through the glaciation indirect effect.

Length of Ship Track (km)
Lifetime of Ship Track (hr)




1) Emissions from ships are expected to increase throughout the Arctic as sea-ice continues
to melt giving way to direct and sought after transportation routes between countries

i

!
) (Corbett et al., 2010).
i‘ — Increased shipping will unlikely provide any significant counter balancing cooling influence over
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-
s
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% the prone and already warming polar region.

2) Assessments of aerosol indirect forcing commonly overlook the proportionof low-clouds
that contain ice.
— These clouds are abundant accounting for roughly 25% of marine low-cloud!

— Global assessments using satellite data are likely biased and overestimate the indirect effect by
neglecting ubiquitous mixed-phase clouds.

)

*

Future Work

* |tisimperative to incorporate mixed-phase clouds in observation-based studies to improve
the estimate of the overall strength of aerosol indirect effects on climate.

— Extend study to globe using the JPL COMPARES (COMPrehensive ARctic Energy budget dataSet)
dataset which combines satellite, reanalysis, and ground base observations into a common

framework.

Results presented here offer unique guidance on how mixed-phase cloud processes should
be incorporated in models under the influence of changing aerosol.

Improve ice nucleation processes and feedbacks involving entrainment and drizzle in GCM’s
with the goal to decrease the uncertainty of the aerosol indirect forcing and the impacts of
climate change.
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