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GMAOQO: Themes

Weather Analysis and Seasonal-to-Decadal
Prediction Analysis and Prediction

Global Mesoscale Observing System
Modeling Science

Reanalysis

These (non-orthogonal) themes decribe GMAQO’s main activities
GEOS-5 is a modular system, encompassing much of the Earth System
All themes include multiple components of the Earth System

Strong emphasis on NASA’s Earth Observations



GEOS-5: An Overview

Modular Earth System Model:

« Atmosphere, land, ocean, cryosphere (physics, chemistry, biology)
* Aerosols, chemistry, carbon cycle, ...

 Early adopter of a modular infrastructure (ESMF)

* Used at resolutions of about 100km to a few km

Data Assimilation:

 Atmospheric assimilation developed jointly with NCEP

* QOcean and land are developed in house

Observations:

e Use a broad range of NASA and non-NASA data

* Ability to synthesize observing systems from model fields



Sea-lce Prediction from Seasonal Forecasts
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Relevance for this Meeting

Data Assimilation:
e confrontation of the GEOS-5 model with observations is the central
theme of GMAOQ’s work

Spatio-temporal structure:

* the broad range of time (hours to decades) and space (few-km to
100-km grids) demands drives GMAO to use resolution-aware

parameterizations



Example 1: Surface Drag over the Ocean

Surface wind speed versus z_ over ocean

A change to the functional
relationship between ocean
roughness and wind stress
was introduced into GEOS-5.

This was based on oceanic
observations (Edson, 2011)
implying that the drag in
GEOS-5 was too weak.

Objective was to improve
surface wind speeds over the
oceans

Work led by Andrea Molod



Impact on Simulated Surface Winds
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The increased surface roughness
over oceans leads to a substantial
improvement in surface winds in
the DJF season (impact extends into
the stratosphere). [Garfinkel et al.,
2013)
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An Additional Improvement

Few observations of surface roughness exist in the vicinity of tropical storms. In GEOS-5,
the roughness increased with wind speed, reaching unrealistic values. An upper bound was
imposed, following work by Emanuel (1996, 2003), Donelan (2004), and others.

Surface wind speed versus z_ over ocean
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Impact: Typhoon Megi in 2010 was more
realistic with capped drag (Molod, 2012)
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GEOS-5 AGCM: Resolution-Aware Cumulus Convection

Approach adopted by Molod et al. (2015) in GEOS-5 builds on the “Stochastic Tokioka” model
by using introducing a limit that depends on resolution of the GCM. (See also Lim et al., 2015.)

PDF of Minimum Allowable Entrainment “Stochastic Tokioka” (Bacmeister
e . and Stephens, 2011) describes the

use of a variable Tokioka (1988)
parameter, which places a minimum
on the entrainment into deep
convective clouds. Tallest (non-
entraining) large mass flux
convective events are eliminated,
and total cumulus mass flux for deep
convection is restricted. Values are
sampled from a PDF with prescribed
parameters).
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Impact on resolved/parametrized precipitation

Total
Conv+Anvil




Improved Tropical Cyclones in MERRA-2

Category-5 Hurricane David (1979) caused widespread damage from the Caribbean to the
U.S.. It was virtually undetected in models of the day. It is one of several historical
hurricanes in MERRA-2 that is realistically depicted for the first time in a gridded data set.

Even through the spatial resolution of
MERRA-2 is not much better than that
of MERRA (close to 50km), this plot
shows that the hurricane is developed
much more realistically in MERRA-2.
Largely a consequence of the model
improvements. (This is a height section
through the core.)

Diagnosis led by Oreste Reale



Example 2: The Quasi-Biennial Oscillation

Mean Diff (ms™): -1.55 0.158  Sdev Diff (ms™): 268 174 ~ 50 hPa (104°E, 1°N)
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MERRA-2 fits the Singapore
observations better, especially during
the westerly phase of the QBO.

Work led by Larry Coy
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Zonal wind forcing terms in MERRA
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Tropical winds in MERRA are
forced in roughly equal measure
by resolved dynamics, gravity-
wave drag, and analysis
increments

Excessive reliance on analysis to
force these winds suggests that a
forcing term is missing

Developments of the GWD
scheme (adding an extra wave
spectrum in the Tropics) was a
part of the development from
MERRA to MERRA-2.



Zonal wind forcing terms in MERRA-2

The impact of these changes to
GWD is high

Pressure (hPa)
Pressure (hPa)

The physical forcing (GWD
driving) now dominates the QBO
wind forcing in MERRA-2
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Example 3: Aerosol Analysis in MERRA-2

0.5 MERRA-2 Global, Monthly Mean Aerosol Optical Depth (AOD)
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» Unigue amongst its peers, the MERRA-2 reanalysis includes an aerosol reanalysis for
the modern satellite era.

» Constrained by observed aerosol optical depth (AOD), MERRA-2 simulates major
aerosol events (i.e. volcanic eruptions) as well as the temporal and spatial variability of

major aerosol species.
Diagnosis led by Cynthia Randles



Aerosol Analysis: Independent Verification
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Pearson's r: 0.85

| Linear Regression: 0.66 x + -0.83
Mean Bias (DIAL-GLOS5): 0.01
Standard Error 0.005
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Emerging Application of MERRA-2 Aerosols to Climate Studies

- AOD zonally-averaged between 0°- 30° N

T ez — wovisame Saharan AirlLayer (SAL) ahd
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8- Zonal decay in AOD from
<[ African source to Caribbean
- matches MODIS C5

[Figure from P. Colarco]
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2006 Daily-Mean Dust Surface Concentration at Barbados

High correlation with daily surface dust at Barbados ™ MERRA-2
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Summary

GEOS-5 modeling work is intimately linked to observations:

 Timescales of hours to decades, includes prediction of weather
and seasonal-to-decadal variations

 Data assimilation, including reanalysis, is a core element

Three examples of model-data combinations, with a focus on the
new GEOS-5 reanalysis, called MERRA-2:

 Observationally derived implementation of surface drag over
oceans — beneficial impacts (when care is taken)

* Physical forcing of the QBO by gravity wave drag

* Emerging capabilities in aerosol assimilation — direct effects
included in MERRA-2



