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Momentum Fluxes
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MBL/CBLAST/CLIMODE Drag Coefficients
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MBL/CBLAST/CLIMODE Drag Coefficients
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Flux Time Series
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The Hockey Stick

|
O Average
This Study
- Andreas et al.




CCSM Drag

Neutral Drag Coefficients
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Surface Momentum Exchange & Waves

 Above the Wave Boundary Layer — MO Similarity expected
to hold. — —
ouUw = pu w

* Within the Wave Boundary Layer — MO Similarity begins to
break down.

oUW = pUw' + puw
e At the surface
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Viscous Stress  Form Drag

 COARE parameterizes this through the roughness length:
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Wind Speed, Wave Age, Wave Slope

05 1
T (N/m?) DC
Wave Age - Equation 14

T

Wind Speed - Equation 10

0.'5 1 15
T (N/m?) DC
Wave Slope - Equation 17

0j5 1
T (N'm?) DC

T

0j5 1
T (N'm?) DC




ENERGY EXCHANGE &
WAVE GROWTH




Energy Flux Into the Marine Surface Layer

(Neutral & Horizontally Homogeneous)




Energy Flux Into the Marine Surface Layer

If there 1s no energy out the bottom, then the law-of-the-wall 1s expected.




Energy Flux Into the Marine Surface Layer
However, 1f some of the energy 1s transported to the ocean then less
energy 1s dissipated & ...




Energy Flux Into the Marine Surface Layer
The measured dissipation should be less than predicted by the
law-of-the-wall.

1 —

E(h) = uwU + we + —wp




Measured dissipation should be
less than predicted.
4

FLIP results

Average Dissipation Profile for Yearday 124.748 to 124.811

Measured
] 1 MO Prediction

confirm this




Energy Flux Into the Marine Surface Layer
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Energy Flux Into the Marine Surface Layer
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The reduced/enhanced dissipation 1s caused by:
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 Wave-induced modulation of the shear
production term.
 Momentum Flux — puw(0) = p(0) dn/ox

* Energy transport

* Wave induced modulation of the energy
transport terms.

* Energy Flux — wp(0) = p(0)on/ot



HEAT EXCHANGE




Heat Fluxes

Latent Heat Flux
QE = ,OLV wqg = ,OCENAQUrG

Drag Coefficient
N 2
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Thermal Roughness Length
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CLIMODE Buoy
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Dalton/Stanton Number Uncertainty
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FUTURE OF FLUX MEASUREMENTS
FOR PROCESS STUDIES



NSF’s Ocean Observing Initiative (OOI)
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The community needs to push for
access to the raw data.

One suggestion is for a group of

PIs to write a proposal to analyze

data from these buoy.

Hold a workshop to compare
techniques, products and discuss
‘scientific findings.
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Summary

The COARE3.5 Drag Coefficient Algorithm gives good
agreement with data from a variety of low-distortion, open ocean
platforms with greatest uncertainty at low & very high winds.

While wave-age and sea-state dependent Charnock variables give
good agreement with data, 1t is hard to beat a wind-speed
dependent formulation.

Our investigations of energy transport in the MABL indicate a
dissipation deficit over growing seas and a dissipation surplus
over swell.

Somewhat less certainty 1s seen in the transfer coefficients for heat
(1.e., the Stanton and Dalton Numbers) due to the use of ship-
based measurements and flow distortion issues, and spray at high
winds.

Disagreement in these transfer coefficients exist between ship- and
buoy-based estimates.

We need to take advantage of the latest buoy-based measurements
from OOI and other field programs.



Questions?



Drag Coetficients at High Winds
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How do we quantify the behavior at High Winds?
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